This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A238392 #17 May 23 2025 23:46:19 %S A238392 1,1,1,1,2,1,1,2,2,1,1,2,4,2,1,1,2,4,4,2,1,1,2,4,6,4,2,1,1,2,4,6,6,4, %T A238392 2,1,1,2,4,6,10,6,4,2,1,1,2,4,6,10,10,6,4,2,1,1,2,4,6,10,14,10,6,4,2, %U A238392 1,1,2,4,6,10,14,14,10,6,4,2,1,1,2,4,6,10,14,20,14,10,6,4,2,1 %N A238392 Triangle read by rows: each row is an initial segment of the terms of A000123 followed by its reflection. %C A238392 Triangle read by rows: each row is an initial segment of the terms of A000123 followed by its reflection. %H A238392 Indranil Ghosh, <a href="/A238392/b238392.txt">Rows 0..125, flattened</a> %F A238392 T(n,k) = A000123(min(k,n-k)). %F A238392 Sum_{k=0..n} T(n,k) = A000123(n). %F A238392 T(2*n,n) = A000123(n). %e A238392 Triangle begins: %e A238392 1; %e A238392 1, 1; %e A238392 1, 2, 1; %e A238392 1, 2, 2, 1; %e A238392 1, 2, 4, 2, 1; %e A238392 1, 2, 4, 4, 2, 1; %e A238392 1, 2, 4, 6, 4, 2, 1; %e A238392 1, 2, 4, 6, 6, 4, 2, 1; %e A238392 1, 2, 4, 6, 10, 6, 4, 2, 1; %e A238392 1, 2, 4, 6, 10, 10, 6, 4, 2, 1; %e A238392 1, 2, 4, 6, 10, 14, 10, 6, 4, 2, 1; %e A238392 1, 2, 4, 6, 10, 14, 14, 10, 6, 4, 2, 1; %e A238392 1, 2, 4, 6, 10, 14, 20, 14, 10, 6, 4, 2, 1; %e A238392 1, 2, 4, 6, 10, 14, 20, 20, 14, 10, 6, 4, 2, 1; %t A238392 a[n_] := If[n==0, 1, a[n - 1] + a[Floor[n/2]]]; Flatten[Table[a[Min[k, n - k]], {n, 0, 13}, {k, 0, n}]] (* _Indranil Ghosh_, Mar 14 2017 *) %o A238392 (PARI) a(n) = if(n==0, 1, a(n-1) + a(floor(n/2))); %o A238392 tabl(nn) = {for(n=0, nn, for(k=0, n, print1(a(min(k, n - k)),", ");); print(););}; %o A238392 tabl(13); \\ _Indranil Ghosh_, Mar 14 2017 %o A238392 (Python) %o A238392 def a(n): return 1 if n==0 else a(n - 1) + a(n//2) %o A238392 i=0 %o A238392 for n in range(0, 126): %o A238392 for k in range(0, n+1): %o A238392 print(str(i)+" "+str(a(min(k, n - k)))) %o A238392 i+=1 # _Indranil Ghosh_, Mar 14 2017 %Y A238392 Cf. A000123, A004197. %K A238392 easy,nonn,tabl %O A238392 0,5 %A A238392 _Philippe Deléham_, Feb 26 2014