cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A238402 Number of ways to write n = p^2 + q - pi(q) with p prime and q among 1, ..., n, where pi(.) is given by A000720.

Original entry on oeis.org

0, 0, 0, 0, 3, 2, 2, 1, 1, 4, 2, 2, 1, 1, 2, 2, 1, 1, 2, 2, 1, 1, 2, 1, 1, 4, 3, 3, 1, 1, 2, 2, 1, 1, 2, 2, 1, 1, 2, 1, 1, 1, 1, 2, 2, 1, 1, 1, 1, 5, 3, 3, 3, 3, 3, 3, 3, 2, 3, 3, 2, 3, 3, 2, 2, 2, 3, 4, 3, 2, 2, 2, 3, 3, 2, 3, 4, 3, 2, 2, 3, 3, 2, 2, 3, 3, 2, 2, 2, 3, 3, 3, 2, 2, 2, 2, 4, 2, 2, 3
Offset: 1

Views

Author

Zhi-Wei Sun, Feb 26 2014

Keywords

Comments

For any positive integer q, clearly q + 1 - pi(q+1) - (q - pi(q)) = 1 + pi(q) - pi(q+1) is 0 or 1. Thus {q - pi(q): q = 1, ..., n} = {1, 2, ..., n-pi(n)}. Note that n - pi(n) > n/2 for n > 8. If p is at least sqrt(n/2), then n - p^2 <= n/2 and hence n - p^2 = q - pi(q) for some q = 1, ..., n. So it can be proved that a(n) > 0 for all n > 4. - Li-Lu Zhao and Zhi-Wei Sun, Feb 26 2014

Examples

			a(9) = 1 since 9 = 2^2 + 9 - pi(9) with 2 prime and pi(9) = 4.
a(40) = 1 since 40 = 5^2 + 24 - pi(24) with 5 prime and pi(24) = 9.
a(120) = 1 since 120 = 7^2 + 95 - pi(95) with 7 prime and pi(95) = 24.
		

Crossrefs

Programs

  • Mathematica
    SQ[n_]:=IntegerQ[Sqrt[n]]&&PrimeQ[Sqrt[n]]
    a[n_]:=Sum[If[SQ[n-q+PrimePi[q]],1,0],{q,1,n}]
    Table[a[n],{n,1,100}]