A238403 Number of ways a number can be decomposed as a sum of the form pq + qr + rp where p < q < r are distinct primes.
0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 0, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 2, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0
Offset: 1
Keywords
Examples
71 = 3*5 + 5*7 + 7*3 = 2*3 + 3*13 + 13*2, therefore a(71) = 2.
Links
- Jean-François Alcover, Table of n, a(n) for n = 1..1000
Programs
-
Mathematica
r[n_, p_] := Reduce[p < q < r && p*q+q*r+r*p == n, {q, r}, Primes]; a[n_] := (For[cnt = 0; p = 2, p <= Ceiling[(n-6)/5], p = NextPrime[p], rnp = r[n, p]; If[rnp =!= False, Which[rnp[[0]] === And, Print["n = ", n, " ", {p, q, r} /. ToRules[rnp]]; cnt++, rnp[[0]] === Or, Print["n = ", n, " ", {p, q, r} /. {ToRules[rnp]}]; cnt += Length[rnp], True, Print["error: n = ", n, " ", rnp]]]]; cnt); Table[a[n], {n, 1, 100}]
-
PARI
list(n)=my(v=vector(n)); forprime(r=5,(n-6)\5, forprime(q=3, min((n-2*r)\(r+2),r-2), my(S=q+r,P=q*r); forprime(p=2,min((n-P)\S,q-1), v[p*S+P]++))); v \\ Charles R Greathouse IV, Feb 26 2014
-
PARI
a(n)=my(s);forprime(r=(sqrtint(3*n-3)+5)\3,(n-6)\5, forprime(q= sqrtint(r^2+n)-r+1,min((n-2*r)\(r+2),r-2),if((n-q*r)%(q+r)==0 && isprime((n-q*r)/(q+r)),s++)));s \\ Charles R Greathouse IV, Feb 26 2014
Comments