This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A238422 #17 Nov 06 2014 09:53:55 %S A238422 1,1,2,2,5,7,15,23,43,70,128,214,383,651,1149,1971,3457,5961,10412, %T A238422 18011,31384,54384,94639,164163,285454,495452,861129,1495126,2597970, %U A238422 4511573,7838280,13613289,23649355,41076088,71354998,123939602,215294730,373962643,649597906,1128352145 %N A238422 Number of compositions of n where no consecutive parts differ by 1. %H A238422 Joerg Arndt and Alois P. Heinz, <a href="/A238422/b238422.txt">Table of n, a(n) for n = 0..1000</a> %F A238422 a(n) ~ c * d^n, where c = 0.501153706040308227351395770679776260606990346633815... and d = 1.737029107886986816124470304294547513896522086125645631179... - _Vaclav Kotesovec_, Feb 26 2014 %e A238422 The a(6) = 15 such compositions are: %e A238422 01: [ 1 1 1 1 1 1 ] %e A238422 02: [ 1 1 1 3 ] %e A238422 03: [ 1 1 3 1 ] %e A238422 04: [ 1 1 4 ] %e A238422 05: [ 1 3 1 1 ] %e A238422 06: [ 1 4 1 ] %e A238422 07: [ 1 5 ] %e A238422 08: [ 2 2 2 ] %e A238422 09: [ 2 4 ] %e A238422 10: [ 3 1 1 1 ] %e A238422 11: [ 3 3 ] %e A238422 12: [ 4 1 1 ] %e A238422 13: [ 4 2 ] %e A238422 14: [ 5 1 ] %e A238422 15: [ 6 ] %p A238422 # b(n, i): number of compositions of n where the leftmost part j %p A238422 # and i do not have distance 1 %p A238422 b:= proc(n, i) option remember; `if`(n=0, 1, %p A238422 add(`if`(abs(i-j)=1, 0, b(n-j, j)), j=1..n)) %p A238422 end: %p A238422 a:= n-> b(n, -1): %p A238422 seq(a(n), n=0..50); %t A238422 b[n_, i_] := b[n, i] = If[n == 0, 1, Sum[If[Abs[i - j] == 1, 0, b[n - j, j]], {j, 1, n}]]; a[n_] := b[n, -1]; Table[a[n], {n, 0, 50}] (* _Jean-François Alcover_, Nov 06 2014, after Maple *) %Y A238422 Cf. A116931 (partitions where no consecutive parts differ by 1). %K A238422 nonn %O A238422 0,3 %A A238422 _Joerg Arndt_ and _Alois P. Heinz_, Feb 26 2014