This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A238425 #22 Mar 07 2022 09:03:08 %S A238425 1,1,1,1,2,4,11,34,124,512,2380,12294,69972,435399,2942672,21478882, %T A238425 168473955,1413823577,12644505883,120097766639,1207617481139, %U A238425 12818915877849,143278176040760,1682262113899134,20704109403389717,266568690074855277,3583926627760681407 %N A238425 Number of descent sequences of length n without two consecutive identical elements (descent sequences without flat steps). %C A238425 A descent sequence is a sequence [d(1), d(2), ..., d(n)] where d(1)=0, d(k)>=0, and d(k) <= 1 + desc([d(1), d(2), ..., d(k-1)]) where desc(.) gives the number of descents of its argument, see A225588. %H A238425 Joerg Arndt and Alois P. Heinz, <a href="/A238425/b238425.txt">Table of n, a(n) for n = 0..200</a> %e A238425 The a(6) = 11 such descent sequences are (dots denote zeros): %e A238425 01: [ . 1 . 1 . 1 ] %e A238425 02: [ . 1 . 1 . 2 ] %e A238425 03: [ . 1 . 1 . 3 ] %e A238425 04: [ . 1 . 1 2 . ] %e A238425 05: [ . 1 . 1 2 1 ] %e A238425 06: [ . 1 . 2 . 1 ] %e A238425 07: [ . 1 . 2 . 2 ] %e A238425 08: [ . 1 . 2 . 3 ] %e A238425 09: [ . 1 . 2 1 . ] %e A238425 10: [ . 1 . 2 1 2 ] %e A238425 11: [ . 1 . 2 1 3 ] %p A238425 # b(n, i, t): number of length-n postfixes of these sequences with a %p A238425 # valid prefix having t descents and rightmost element i. %p A238425 b:= proc(n, i, t) option remember; `if`(n<1, 1, %p A238425 add(`if`(j=i, 0, b(n-1, j, t+`if`(j<i, 1, 0))), j=0..t+1)) %p A238425 end: %p A238425 a:= n-> b(n-1, 0, 0): %p A238425 seq(a(n), n=0..30); %t A238425 b[n_, i_, t_] := b[n, i, t] = If[n < 1, 1, Sum[If[j == i, 0, b[n - 1, j, t + If[j < i, 1, 0]]], {j, 0, t + 1}]]; %t A238425 a[n_] := b[n - 1, 0, 0]; %t A238425 Table[a[n], {n, 0, 30}] (* _Jean-François Alcover_, Mar 07 2022, after _Alois P. Heinz_ *) %o A238425 (Sage) %o A238425 @CachedFunction %o A238425 def b(n, i, t): %o A238425 if n<1: %o A238425 return 1 %o A238425 return sum(b(n-1, j, t+(j<i)) for j in range(t+2)) %o A238425 def a(n): %o A238425 if n<1: %o A238425 return 1 %o A238425 return sum((-1)**(n-k)*binomial(n-1, k-1)*b(k-1, 0, 0) for k in range(n+1)) %o A238425 [a(n) for n in range(33)] %o A238425 # end of program %Y A238425 Cf. A138265 (ascent sequence without two consecutive identical elements). %Y A238425 Cf. A225588 (all descent sequences). %K A238425 nonn %O A238425 0,5 %A A238425 _Joerg Arndt_ and _Alois P. Heinz_, Feb 26 2014