This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A238433 #21 Jan 12 2021 09:06:52 %S A238433 1,1,2,2,4,5,6,8,13,12,19,23,29,35,45,52,68,80,98,111,141,163,198,230, %T A238433 283,320,376,443,517,585,719,799,932,1085,1254,1417,1668,1861,2138, %U A238433 2449,2804,3166,3666,4083,4662,5277,5960,6676,7651,8494,9635,10803,12157 %N A238433 Number of partitions of n avoiding equidistant 3-term arithmetic progressions. %H A238433 Fausto A. C. Cariboni, <a href="/A238433/b238433.txt">Table of n, a(n) for n = 0..300</a> (terms 0..150 from Joerg Arndt and Alois P. Heinz) %e A238433 The a(8) = 13 such partitions are: %e A238433 01: [ 1 1 2 4 ] %e A238433 02: [ 1 1 3 3 ] %e A238433 03: [ 1 1 6 ] %e A238433 04: [ 1 2 2 3 ] %e A238433 05: [ 1 2 5 ] %e A238433 06: [ 1 3 4 ] %e A238433 07: [ 1 7 ] %e A238433 08: [ 2 2 4 ] %e A238433 09: [ 2 3 3 ] %e A238433 10: [ 2 6 ] %e A238433 11: [ 3 5 ] %e A238433 12: [ 4 4 ] %e A238433 13: [ 8 ] %e A238433 Note that the fourth partition has the arithmetic progression 1,2,3, but not in equidistant positions. %p A238433 b:= proc(n, i, l) local j; %p A238433 for j from 2 to iquo(nops(l)+1, 2) do %p A238433 if l[1]-l[j]=l[j]-l[2*j-1] then return 0 fi od; %p A238433 `if`(n=0, 1, `if`(i<1, 0, b(n, i-1, l)+ %p A238433 `if`(i>n, 0, b(n-i, i, [i,l[]])))) %p A238433 end: %p A238433 a:= n-> b(n, n, []): %p A238433 seq(a(n), n=0..40); %t A238433 b[n_, i_, l_] := b[n, i, l] = Module[{j}, For[ j = 2 , j <= Quotient[ Length[l] + 1, 2] , j++, If[ l[[1]] - l[[j]] == l[[j]] - l[[2*j - 1]] , Return[0]]]; If[n == 0, 1, If[i < 1, 0, b[n, i - 1, l] + If[i > n, 0, b[n - i, i, Prepend[l, i]]]]]]; %t A238433 a[n_] := b[n, n, {}]; %t A238433 Table[a[n], {n, 0, 40}] (* _Jean-François Alcover_, May 21 2018, translated from Maple *) %Y A238433 Cf. A238432 (same for compositions). %Y A238433 Cf. A238571 (partitions avoiding any 3-term arithmetic progression). %Y A238433 Cf. A238424 (partitions avoiding three consecutive parts in arithmetic progression). %Y A238433 Cf. A238687. %K A238433 nonn %O A238433 0,3 %A A238433 _Joerg Arndt_ and _Alois P. Heinz_, Mar 01 2014