cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A238434 Expansion of G(1) where G(k) = 1 + q^k / ( 1 - q^k * G(k+2) ).

This page as a plain text file.
%I A238434 #9 Mar 01 2014 09:30:31
%S A238434 1,1,1,1,1,2,3,4,6,9,13,19,28,42,62,91,135,200,296,438,648,960,1421,
%T A238434 2103,3114,4611,6827,10107,14964,22157,32806,48572,71917,106483,
%U A238434 157661,233436,345632,511755,757720,1121901,1661122,2459512,3641632,5391915,7983443,11820547,17501885,25913856,38368900,56810249
%N A238434 Expansion of G(1) where G(k) = 1 + q^k / ( 1 - q^k * G(k+2) ).
%C A238434 What does this sequence count?
%o A238434 (PARI)
%o A238434 N = 66;  q = 'q + O('q^N);
%o A238434 G(k) = if(k>N, 1, 1 + q^k / ( 1 - q^k * G(k+2) ) );
%o A238434 Vec( G(1) )
%Y A238434 Cf. A186085: G(1) where G(k) = 1 + q^k/( 1 - q^k * G(k+1) ).
%K A238434 nonn
%O A238434 0,6
%A A238434 _Joerg Arndt_, Feb 27 2014