cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A238438 Expansion of 1/G(0) where G(k) = 1 - q/(1 - q - q^3 / G(k+1) ).

Original entry on oeis.org

1, 1, 2, 4, 9, 21, 50, 121, 297, 738, 1853, 4694, 11982, 30790, 79586, 206786, 539784, 1414905, 3722776, 9828501, 26028969, 69129150, 184076913, 491340306, 1314412198, 3523519135, 9463563168, 25462981484, 68626114915, 185246103584, 500779373140, 1355636896041, 3674558399538, 9972405246294, 27095580261125
Offset: 0

Views

Author

Joerg Arndt, Feb 27 2014

Keywords

Comments

What does this sequence count?

Crossrefs

Cf. A086581: 1/G(0) where G(k) = 1 - q/(1 - q - q^2 / G(k+1) ).
Cf. A119370: 1/G(0) where G(k) = 1 - q/(1 - (q + q^2) / G(k+1) ).

Programs

  • Mathematica
    CoefficientList[Series[2*(1-x)/(1 - 2*x + x^3 + Sqrt[1 - 4*x + 4*x^2 - 2*x^3 + x^6]), {x, 0, 20}], x] (* Vaclav Kotesovec, Mar 01 2014 *)
  • PARI
    N = 66;  q = 'q + O('q^N);
    G(k) = if(k>N, 1,  1 - q/(1 - q - q^3 / G(k+1) ) );
    Vec( 1/G(0) )

Formula

From Vaclav Kotesovec, Mar 01 2014: (Start)
G.f.: 2*(1-x)/(1 - 2*x + x^3 + sqrt(1 - 4*x + 4*x^2 - 2*x^3 + x^6)).
D-finite with Recurrence: (n+3)*a(n) = 2*(2*n+3)*a(n-1) - 4*n*a(n-2) + (2*n-3)*a(n-3) - (n-6)*a(n-6).
a(n) ~ (6*r^2+14*r+17) * sqrt(7*r-2) / (2 * sqrt(Pi) * n^(3/2) * r^(n-1/2)), where r = 1/3*(-2 - 2*(2/(47 + 3*sqrt(249)))^(1/3) + (1/2*(47 + 3*sqrt(249)))^(1/3)) = 0.3532099641993244294831... is the root of the equation r^3 + 2*r^2 + 2*r = 1.
(End)
G.f. A(q) satisfies 0 = -q^3*A(q)^2 + (q^3 - 2*q + 1)*A(q) + (q - 1).