cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A238440 Expansion of 1/E(q/E(q)) where E(q) = Product_{n>=1} (1 - q^n).

This page as a plain text file.
%I A238440 #11 Nov 11 2017 17:49:52
%S A238440 1,1,3,9,27,79,229,657,1873,5304,14944,41895,116947,325133,900617,
%T A238440 2486183,6841490,18770754,51358188,140154540,381540434,1036261537,
%U A238440 2808328337,7594958401,20499680869,55227373266,148520150761,398726637407,1068701794158,2859956501816,7642086948143,20391083977989,54333644617311
%N A238440 Expansion of 1/E(q/E(q)) where E(q) = Product_{n>=1} (1 - q^n).
%C A238440 What does this sequence count?
%F A238440 G.f.: 1/E(q/E(q)) where E(q) = Product_{n>=1} (1 - q^n).
%o A238440 (PARI) q = 'q + O('q^66);  Vec( 1/eta(q/eta(q)) )
%Y A238440 Cf. A109085: G.f. 1/E(q/E(q/E(q/E(q/E(q/E...))))).
%K A238440 nonn
%O A238440 0,3
%A A238440 _Joerg Arndt_, Feb 27 2014