cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A238442 Triangle read by rows demonstrating Euler's pentagonal theorem for the sum of divisors.

This page as a plain text file.
%I A238442 #90 Aug 23 2024 23:23:48
%S A238442 1,1,2,3,1,4,3,7,4,-5,6,7,-1,12,6,-3,-7,8,12,-4,-1,15,8,-7,-3,13,15,
%T A238442 -6,-4,18,13,-12,-7,12,18,-8,-6,12,28,12,-15,-12,1,14,28,-13,-8,3,24,
%U A238442 14,-18,-15,4,15,24,24,-12,-13,7,1,31,24,-28,-18,6,3
%N A238442 Triangle read by rows demonstrating Euler's pentagonal theorem for the sum of divisors.
%C A238442 The law found by Leonhard Euler for the sum of divisors of n is that S(n) = S(n - 1) + S(n - 2) - S(n - 5) - S(n - 7) + S(n - 12) + S(n - 15) - S(n - 22) - S(n - 26) + S(n - 35) + S(n - 40) + ..., where the constants are the positive generalized pentagonal numbers, and S(0) = n, which is also a positive member of A001318.
%C A238442 Therefore column k lists A001318(k) together with the elements of A000203, starting at row A001318(k), but with all elements of column k multiplied by A057077(k-1).
%C A238442 The first element of column k is A057077(k-1)*A001318(k)which is also the last term of row A001318(k).
%C A238442 For Euler's pentagonal theorem for the partition numbers see A175003.
%C A238442 Note that both of Euler's pentagonal theorems refer to generalized pentagonal numbers (A001318), not to pentagonal numbers (A000326).
%H A238442 L. Euler, <a href="https://arxiv.org/abs/math/0411587">An observation on the sums of divisors</a>, arXiv:math/0411587 [math.HO], 2004-2009, p. 8.
%H A238442 L. Euler, <a href="http://math.dartmouth.edu/~euler/pages/E542.html">De mirabilibus proprietatibus numerorum pentagonalium</a>
%H A238442 L. Euler, <a href="http://eulerarchive.maa.org//pages/E175.html">Découverte d'une loi tout extraordinaire des nombres par rapport à la somme de leurs diviseurs</a>
%H A238442 L. Euler, <a href="http://eulerarchive.maa.org/docs/translations/E175en.pdf">Discovery of a most extraordinary law of numbers, relating to the sum of their divisors</a>
%H A238442 L. Euler, <a href="http://math.dartmouth.edu/~euler/pages/E243.html">Observatio de summis divisorum</a>, p. 8.
%H A238442 L. Euler, <a href="https://arxiv.org/abs/math/0505373">On the remarkable properties of the pentagonal numbers</a>, arXiv:math/0505373 [math.HO], 2005.
%H A238442 L. Euler, J. Bell, <a href="http://arxiv.org/abs/math/0507201">A demonstration of a theorem on the order observed in the sums of divisors</a>, arXiv:math/0507201 [math.HO], 2005-2009.
%H A238442 <a href="/index/Si#SIGMAN">Index entries for sequences related to sigma(n)</a>
%F A238442 T(n,k) = A057077(k-1)*A001318(k), if n = A001318(k) and k = A235963(n). Otherwise T(n,k) = A057077(k-1)*A000203(n - A001318(k)), n >= 1, 1 <= k <= A235963(n).
%e A238442 Triangle begins:
%e A238442    1;
%e A238442    1,   2;
%e A238442    3,   1;
%e A238442    4,   3;
%e A238442    7,   4,  -5;
%e A238442    6,   7,  -1;
%e A238442   12,   6,  -3,  -7;
%e A238442    8,  12,  -4,  -1;
%e A238442   15,   8,  -7,  -3;
%e A238442   13,  15,  -6,  -4;
%e A238442   18,  13, -12,  -7;
%e A238442   12,  18,  -8,  -6,  12;
%e A238442   28,  12, -15, -12,   1;
%e A238442   14,  28, -13,  -8,   3;
%e A238442   24,  14, -18, -15,   4,  15;
%e A238442   24,  24, -12, -13,   7,   1;
%e A238442   31,  24, -28, -18,   6,   3;
%e A238442   18,  31, -14, -12,  12,   4;
%e A238442   39,  18, -24, -28,   8,   7;
%e A238442   20,  39, -24, -14,  15,   6;
%e A238442   42,  20, -31, -24,  13,  12;
%e A238442   32,  42, -18, -24,  18,   8, -22;
%e A238442   36,  32, -39, -31,  12,  15,  -1;
%e A238442   24,  36, -20, -18,  28,  13,  -3;
%e A238442   60,  24, -42, -39,  14,  18,  -4;
%e A238442   31,  60, -32, -20,  24,  12,  -7, -26;
%e A238442   ...
%e A238442 For n = 21 the sum of divisors of 21 is 1 + 3 + 7 + 21 = 32. On the other hand, from Euler's Pentagonal Number Theorem we have that the sum of divisors of 21 is S_21 = S_20 + S_19 - S_16 - S_14 + S_9 + S_6, the same as the sum of the 21st row of triangle: 42 + 20 - 31 - 24 + 13 + 12 = 32, equaling the sum of divisors of 21.
%e A238442 For n = 22 the sum of divisors of 22 is 1 + 2 + 11 + 22 = 36. On the other hand, from Euler's Pentagonal Number Theorem we have that the sum of divisors of 22 is S_22 = S_21 + S_20 - S_17 - S_15 + S_10 + S_7 - S_0, the same as the sum of the 22nd row of triangle is 32 + 42 - 18 - 24 + 18 + 8 - 22 = 36, equaling the sum of divisors of 22. Note that S_0 = n, hence in this case S_0 = 22.
%t A238442 rows = m = 18;
%t A238442 a057077[n_] := {1, 1, -1, -1}[[Mod[n, 4] + 1]];
%t A238442 a001318[n_] := (1/8)((2n + 1) Mod[n, 2] + 3n^2 + 2n);
%t A238442 a235963[n_] := Flatten[Table[k, {k, 0, m}, {(k+1)/(Mod[k, 2]+1)}]][[n+1]];
%t A238442 T[n_, k_] := If[n == a001318[k] && k == a235963[n], a001318[k] a057077[k - 1], a057077[k - 1] DivisorSigma[1, n - a001318[k]]];
%t A238442 Table[T[n, k], {n, 1, m}, {k, 1, a235963[n]}] // Flatten (* _Jean-François Alcover_, Nov 29 2018 *)
%o A238442 (GW-BASIC)
%o A238442 10 'A program with four A-numbers. _Omar E. Pol_, Feb 26 2014
%o A238442 20 Dim A000203(30), A001318(10), A057077(30), A235963(30), T(30,10)
%o A238442 30 For n = 1 to 26
%o A238442 40   For k = 1 to A235963(n)
%o A238442 50     If n = A001318(k) and k = A235963(n) then T(n,k) = A057077(k-1)*A001318(k) else T(n,k) = A057077(k-1)*A000203(n - A001318(k))
%o A238442 60   print T(n,k);
%o A238442 70   next k
%o A238442 80 print
%o A238442 90 next n
%o A238442 100 End
%Y A238442 Row sums give A000203, the sum of divisors of n.
%Y A238442 Row n has length A235963(n).
%Y A238442 Cf. A001318, A027750, A057077, A175003, A196020, A237270, A237273.
%K A238442 sign,tabf
%O A238442 1,3
%A A238442 _Omar E. Pol_, Feb 26 2014