This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A238444 #34 Jan 29 2023 19:42:31 %S A238444 0,1,2,3,3,2,4,3,7,4,3,2,2,3,3,4,7,8,5,9,4,5,7,4,4,2,5,3,4,2,3,3,6,5, %T A238444 6,3,2,3,3,2,3,2,3,4,2,7,3,3,7,2,6,5,2,5,4,3,4,5,4,2,3,6,7,7,2,4,5,2, %U A238444 3,2,2,7,3,2,5,5,6,6,10,2,5,2,5,2,5,3,6 %N A238444 a(n) is the number of (not necessarily distinct) integers i!+(prime(n)-1)!/i!, i=1,2,...,prime(n)-2, which are divisible by prime(n). %C A238444 If n>1, then from Wilson's theorem (i=1) and a simple corollary to it (i=prime(n)-2) we have a(n)>=2. %C A238444 Conjecture: There are infinitely many n for which a(n)=2 (the sequence of corresponding primes is A238460). %H A238444 Peter J. C. Moses, <a href="/A238444/b238444.txt">Table of n, a(n) for n = 1..1000</a> %e A238444 Let n=4, prime(n)=7. Consider integers i!+6!/i!, i=1,2,3,4,5: 721,362,126,54,126. Among them 721,126,126 are divisible by 7. So a(4)=3. %p A238444 A238444 := proc(n) %p A238444 local p,a,i ; %p A238444 p := ithprime(n) ; %p A238444 a := 0 ; %p A238444 for i from 1 to p-2 do %p A238444 if modp( i!+(p-1)!/i!,p)= 0 then %p A238444 a := a+1 ; %p A238444 end if; %p A238444 end do; %p A238444 a ; %p A238444 end proc: %p A238444 seq(A238444(n),n=1..20) ; # _R. J. Mathar_, Mar 06 2014 %t A238444 a[n_] := Module[{p, r}, p = Prime[n]; r = Range[p-2]; Count[r!+(p-1)!/r!, k_ /; Divisible[k, p]]]; Table[a[n], {n, 1, 100}] (* _Jean-François Alcover_, Feb 27 2014 *) %o A238444 (PARI) a(n) = sum(i=1, prime(n)-2, ((i!+(prime(n)-1)!/i!) % prime(n)) == 0); \\ _Michel Marcus_, Feb 27 2014 %Y A238444 Cf. A000040, A238460. %K A238444 nonn %O A238444 1,3 %A A238444 _Vladimir Shevelev_, Feb 26 2014 %E A238444 More terms from _Peter J. C. Moses_, Feb 26 2014