This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A238452 #19 Jun 07 2021 13:31:19 %S A238452 0,1,2,2,8,5,30,14,112,42,420,132,1584,429,6006,1430,22880,4862,87516, %T A238452 16796,335920,58786,1293292,208012,4992288,742900,19315400,2674440, %U A238452 74884320,9694845,290845350,35357670,1131445440,129644790,4407922860,477638700,17194993200 %N A238452 Second column of the extended Catalan triangle A189231. %F A238452 Definition: a(n) = binomial(n+1, floor(n/2)+1) / (floor(n/2)+2) if n is odd, and 2*binomial(n, floor(n/2)+1) otherwise. %F A238452 a(n) = A189231(n, 1). %F A238452 a(n) = A238762(n+1, n-1). %F A238452 a(2*n) = A162551(n). %F A238452 a(2*n+1) = A000108(n+1). %F A238452 a(n) = A057977(n+1) - A057977(n)*((n+1) mod 2). - _Peter Luschny_, Aug 07 2016 %p A238452 a := proc(n) option remember; %p A238452 if n < 3 then return n fi; %p A238452 if n mod 2 = 0 then return n*a(n-1) fi; %p A238452 h := iquo(n,2); n*a(n-1)/(h*(h+2)) end: %p A238452 seq(a(n), n=0..36); %t A238452 t[n_, k_] /; (k > n || k < 0) = 0; t[n_, n_] = 1; t[n_, k_] := t[n, k] = %t A238452 t[n - 1, k - 1] + Mod[n - k, 2] t[n - 1, k] + t[n - 1, k + 1]; %t A238452 a[n_] := t[n, 1]; %t A238452 Table[a[n], {n, 0, 36}] (* _Jean-François Alcover_, Jul 10 2019 *) %o A238452 (Sage) %o A238452 def A238452(): %o A238452 a = 1; n = 2 %o A238452 yield 0 %o A238452 while True: %o A238452 yield a %o A238452 a *= n %o A238452 if is_odd(n): %o A238452 a /= (n//2*(n//2+2)) %o A238452 n += 1 %o A238452 a = A238452(); [next(a) for n in range(36)] %Y A238452 Cf. A000108, A057977, A162551, A189231. %K A238452 nonn,easy %O A238452 0,3 %A A238452 _Peter Luschny_, Mar 01 2014