This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A238454 #33 Oct 12 2022 08:59:16 %S A238454 2,1,4,16,17,68,89,356,697,1337,2449,4001,4417,17668,24329,4633,18532, %T A238454 74128,296512,1186048,1778369,1181833,4727332,18909328,28184177, %U A238454 17830441,71321764,285287056,381898097,9092137,36368548,145474192,581896768,2327587072,9310348288 %N A238454 Difference between 2^(2*n-1) and the next larger square. %F A238454 From _Antti Karttunen_, Feb 27 2014: (Start) %F A238454 a(n) = ceiling(sqrt(2^(2*n-1)))^2 - 2^(2*n-1). %F A238454 For all n, A000035(abs(A201125(n) - A238454(n))) = 1, because if the nearest square at the other side of 2^(2*n-1) is even, then the nearest square at the other side is odd. %F A238454 (End) %e A238454 a(1) = 4 - 2^1 = 2. %e A238454 a(2) = 9 - 2^3 = 1. %e A238454 a(3) = 36 - 2^5 = 4. %t A238454 (Floor[Sqrt[#]]+1)^2-#&/@Table[2^(2n-1),{n,40}] (* _Harvey P. Dale_, Jul 05 2019 *) %o A238454 (Python) %o A238454 def isqrt(a): %o A238454 sr = 1 << (int.bit_length(int(a)) >> 1) %o A238454 while a < sr*sr: sr>>=1 %o A238454 b = sr>>1 %o A238454 while b: %o A238454 s = sr + b %o A238454 if a >= s*s: sr = s %o A238454 b>>=1 %o A238454 return sr %o A238454 def a(n): %o A238454 nn = 2**(2*n+1) %o A238454 s = isqrt(nn) %o A238454 return (s+1)**2-nn %o A238454 for n in range(77): print(str(a(n)), end=',') %o A238454 (Sage) %o A238454 def a(n): %o A238454 return ceil(2^n/sqrt(2))^2 - 2^(2*n-1) # _Ralf Stephan_, Mar 08 2014 %o A238454 (PARI) a(n) = my(r,s=sqrtint(1<<(2*n-1),&r)); 2*s+1-r; \\ _Kevin Ryde_, Oct 12 2022 %Y A238454 Cf. A000079, A056008, A201125, A236564. %K A238454 nonn,easy %O A238454 1,1 %A A238454 _Alex Ratushnyak_, Feb 26 2014