cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A238471 a(n) = binomial(5n+6, 4)/5 for n >= 0.

Original entry on oeis.org

3, 66, 364, 1197, 2990, 6293, 11781, 20254, 32637, 49980, 73458, 104371, 144144, 194327, 256595, 332748, 424711, 534534, 664392, 816585, 993538, 1197801, 1432049, 1699082, 2001825, 2343328, 2726766, 3155439, 3632772, 4162315, 4747743, 5392856, 6101579, 6877962
Offset: 0

Views

Author

Wolfdieter Lang, Feb 28 2014

Keywords

Comments

This sequence appears in the 5-section of A234042.

Crossrefs

Programs

  • Mathematica
    a[n_] := Binomial[5*n + 6, 4]/5; Array[a, 40, 0] (* Amiram Eldar, Sep 20 2022 *)

Formula

a(n) = binomial(5*n+6, 4)/5 = (5*n+6)*(5*n+3)*(5*n+4)*(n+1)/4! for n >= 0.
a(n) = A234042(5*n+2) for n >= 0.
a(n) = 3*b(n) + 51*b(n-1) + 64*b(n-2) + 7*b(n-3), with b(n) = binomial(n+4,4) = A000332(n) for n >= 0.
O.g.f.: (3 + 51*x + 64*x^2 + 7*x^3)/(1-x)^5.
Sum_{n>=0} 1/a(n) = 2*sqrt(5+2/sqrt(5))*Pi - 10*sqrt(5)*log(phi) - 15*log(5) + 20, where phi is the golden ratio (A001622). - Amiram Eldar, Sep 20 2022