This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A238472 #14 Sep 20 2022 02:38:00 %S A238472 7,99,476,1463,3510,7192,13209,22386,35673,54145,79002,111569,153296, %T A238472 205758,270655,349812,445179,558831,692968,849915,1032122,1242164, %U A238472 1482741,1756678,2066925,2416557,2808774,3246901,3734388,4274810,4871867,5529384,6251311,7041723 %N A238472 a(n) = binomial(5*n+7, 4)/5 for n >= 0. %C A238472 This sequence appears in the 5-section of A234042. %F A238472 a(n) = binomial(5*n+7, 4)/5 for n >= 0. %F A238472 a(n) = A234042(5*n+3) for n >= 0. %F A238472 a(n) = 7*b(n) + 64*b(n-1) + 51*b(n-2) + 3*b(n-3), with b(n) = binomial(n+4,4) = A000332(n) for n >= 0. %F A238472 O.g.f.: (7 + 64*x + 51*x^2 + 3*x^3)/(1-x)^5. %F A238472 Sum_{n>=0} 1/a(n) = 2*sqrt(5+2/sqrt(5))*Pi + 10*sqrt(5)*log(phi) + 15*log(5) - 50, where phi is the golden ratio (A001622). - _Amiram Eldar_, Sep 20 2022 %t A238472 a[n_] := Binomial[5*n + 7, 4]/5; Array[a, 40, 0] (* _Amiram Eldar_, Sep 20 2022 *) %Y A238472 Cf. A000332, A001622, A234042, A151989, A234043, A238471, A238473. %K A238472 nonn,easy %O A238472 0,1 %A A238472 _Wolfdieter Lang_, Feb 28 2014