cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A238473 a(n) = binomial(5*n+8, 4)/5 for n >= 0.

This page as a plain text file.
%I A238473 #11 Sep 20 2022 01:59:04
%S A238473 14,143,612,1771,4095,8184,14763,24682,38916,58565,84854,119133,
%T A238473 162877,217686,285285,367524,466378,583947,722456,884255,1071819,
%U A238473 1287748,1534767,1815726,2133600,2491489,2892618,3340337,3838121,4389570,4998409,5668488,6403782,7208391
%N A238473 a(n) = binomial(5*n+8, 4)/5 for n >= 0.
%C A238473 This sequence appears in the 5-section of A234042.
%F A238473 a(n) = binomial(5*n+8, 4)/5 = (5*n+8)*(5*n+7)*(5*n+6)*(n+1)/4! for n >= 0.
%F A238473 a(n) = A234042(5*n+2) for n >= 0.
%F A238473 a(n) = 14*b(n) + 73*b(n-1) + 37*b(n-2) + b(n-3), with b(n) = binomial(n+4,4) = A000332(n) for n >= 0.
%F A238473 O.g.f.: (14 + 73*x + 37*x^2 + x^3)/(1-x)^5.
%F A238473 Sum_{n>=0} 1/a(n) = 110/3 - 2*sqrt(25 - 38/sqrt(5))*Pi - 10*sqrt(5)*log(phi) - 5*log(5), where phi is the golden ratio (A001622). - _Amiram Eldar_, Sep 20 2022
%t A238473 a[n_] := Binomial[5*n + 8, 4]/5; Array[a, 40, 0] (* _Amiram Eldar_, Sep 20 2022 *)
%Y A238473 Cf. A000332, A001622, A234042, A151989, A234043, A238471, A238472.
%K A238473 nonn,easy
%O A238473 0,1
%A A238473 _Wolfdieter Lang_, Feb 28 2014