cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A238475 Rectangular array with all start numbers Me(n, k), k >= 1, for the Collatz operation ud^(2*n), n >= 1, ending in an odd number, read by antidiagonals.

This page as a plain text file.
%I A238475 #32 Feb 16 2025 08:33:21
%S A238475 1,9,5,17,37,21,25,69,149,85,33,101,277,597,341,41,133,405,1109,2389,
%T A238475 1365,49,165,533,1621,4437,9557,5461,57,197,661,2133,6485,17749,38229,
%U A238475 21845,65,229,789,2645,8533,25941,70997,152917,87381
%N A238475 Rectangular array with all start numbers Me(n, k), k >= 1, for the Collatz operation ud^(2*n), n >= 1, ending in an odd number, read by antidiagonals.
%C A238475 The two operations on natural numbers m used in the Collatz 3x+1 conjecture (see the links) are here (following the M. Trümper reference) denoted by u for 'up' and d for 'down': u m = 3*m+1, if m is odd, and d m = m/2 if m is even. The present array gives all positive start numbers Me(n, k), k >= 1, for Collatz sequences following the pattern (word) ud^(2*n), for n >= 1, which end in an odd number. The end number does not depend on n and it is given by Ne(k) = 6*k - 5.
%C A238475 This rectangular array is Example 2.1. with x = 2*n, n >= 1, of the M. Trümper reference, pp. 4-5, written as a triangle by taking NE-SW diagonals. The case x = 2*n+1, n >= 0, for the word ud^(2*k+1) appears as array and triangle in A238476.
%C A238475 The first row sequences of the array Me (they become columns in the triangle Te) are A017077, A238477, A239123, ...
%C A238475 Note that there are also Collatz sequences starting with an odd number, following the pattern ud^(2*n) which end in an even number. For example, take n=1 and the sequence [5, 16, 8, 4]. Such sequences are here not considered.
%H A238475 W. Lang, <a href="https://cs.uwaterloo.ca/journals/JIS/VOL17/Lang/lang6.html">On Collatz' Words, Sequences, and Trees</a>, J. of Integer Sequences, Vol. 17 (2014), Article 14.11.7.
%H A238475 Manfred Trümper, <a href="http://dx.doi.org/10.1155/2014/756917">The Collatz Problem in the Light of an Infinite Free Semigroup</a>, Chinese Journal of Mathematics, Vol. 2014, Article ID 756917, 21 pages.
%H A238475 Eric Weisstein's World of Mathematics, <a href="https://mathworld.wolfram.com/CollatzProblem.html">Collatz Problem</a>.
%H A238475 Wikipedia, <a href="https://en.wikipedia.org/wiki/Collatz_conjecture">Collatz Conjecture</a>.
%F A238475 The array: Me(n, k) = 2^(2*n+1)*k - (5*2^(2*n)+1)/3 for n >= 1 and k >= 1.
%F A238475 The triangle: Te(m, n) = Me(n, m-n+1) = 2*4^n*(m-n) + (4^n-1)/3 for m >= n >= 1 and 0 for m < n.
%e A238475 The rectangular array Me(n, k) begins:
%e A238475 n\k      1       2       3        4       5        6        7        8        9       10 ...
%e A238475 1:       1       9      17       25      33       41       49       57       65       73
%e A238475 2:       5      37      69      101     133      165      197      229      261      293
%e A238475 3:      21     149     277      405     533      661      789      917     1045     1173
%e A238475 4:      85     597    1109     1621    2133     2645     3157     3669     4181     4693
%e A238475 5:     341    2389    4437     6485    8533    10581    12629    14677    16725    18773
%e A238475 6:    1365    9557   17749    25941   34133    42325    50517    58709    66901    75093
%e A238475 7:    5461   38229   70997   103765  136533   169301   202069   234837   267605   300373
%e A238475 8:   21845  152917  283989   415061  546133   677205   808277   939349  1070421  1201493
%e A238475 9:   87381  611669 1135957  1660245 2184533  2708821  3233109  3757397  4281685  4805973
%e A238475 10: 349525 2446677 4543829  6640981 8738133 10835285 12932437 15029589 17126741 19223893
%e A238475 ...
%e A238475 The triangle Te(m, n) begins (zeros are not shown):
%e A238475 m\n   1    2    3     4      5      6       7       8       9      10 ...
%e A238475 1:    1
%e A238475 2:    9    5
%e A238475 3:   17   37   21
%e A238475 4:   25   69  149    85
%e A238475 5:   33  101  277   597    341
%e A238475 6:   41  133  405  1109   2389   1365
%e A238475 7:   49  165  533  1621   4437   9557    5461
%e A238475 8:   57  197  661  2133   6485  17749   38229   21845
%e A238475 9:   65  229  789  2645   8533  25941   70997  152917   87381
%e A238475 10:  73  261  917  3157  10581  34133  103765  283989  611669  349525
%e A238475 ...
%e A238475 ----------------------------------------------------------------------------------------------
%e A238475 n=1, ud^2, k=1: Me(1, 1) = 1 = Te(1, 1), Ne(1) = 1 with the Collatz sequence [1, 4, 2, 1] of length 4.
%e A238475 n=1, ud^2, k=2: Me(1, 2) = 9 = Te(2, 1), Ne(2) = 7 with the Collatz sequence [9, 28, 14, 7] of length 4.
%e A238475 n=2, ud^4, k=1: Me(2, 1) = 5 = Te(2, 2), Ne(1) = 1 with the length 6 Collatz sequence [5, 16, 8, 4, 2, 1].
%e A238475 n=5, ud^(10), k=2: Me(5, 2) =  2389  = Te(6,5),  Ne(2) = 7 with the Collatz sequence [2389, 7168, 3584, 1792, 896, 448, 224, 112, 56, 28, 14, 7] of length 12.
%Y A238475 Cf. A006577, A139399, A112695, A238476, A017077, A238477, A239123.
%K A238475 nonn,easy,tabl
%O A238475 1,2
%A A238475 _Wolfdieter Lang_, Mar 10 2014