cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A238476 Rectangular array with all start numbers Mo(n, k), k >= 1, for the Collatz operation ud^(2*n-1), n >= 1, ending in an odd number, read by antidiagonals.

This page as a plain text file.
%I A238476 #33 Feb 16 2025 08:33:21
%S A238476 3,7,13,11,29,53,15,45,117,213,19,61,181,469,853,23,77,245,725,1877,
%T A238476 3413,27,93,309,981,2901,7509,13653,31,109,373,1237,3925,11605,30037,
%U A238476 54613,35,125,437,1493,4949,15701,46421,120149,218453
%N A238476 Rectangular array with all start numbers Mo(n, k), k >= 1, for the Collatz operation ud^(2*n-1), n >= 1, ending in an odd number, read by antidiagonals.
%C A238476 The two operations on natural numbers m used in the Collatz 3x+1 conjecture are here denoted (with M. Trümper, see the link) by u for 'up' and d for 'down': u m = 3*m+1, if m is odd, and d m = m/2 if m is even. The present array gives all start numbers Mo(n, k), k >= 1, for Collatz sequences following the pattern (word) ud^(2*n-1), with n >= 1, ending in an odd number. This end number does not depend on n and it is given by No(k) = 6*k - 1. This Collatz sequence has length 1 + (1 + 2*n - 1) = 2*n + 1.
%C A238476 This rectangular array is Example 2.1. with x = 2*n-1, n >= 1, of the M. Trümper reference, pp. 4-5, written as a triangle by taking NE-SW diagonals. The case x = 2*n, n >= 1, for the word ud^(2*n) appears as array and triangle A238475.
%C A238476 The first rows of array Mo (columns of triangle To) are A004767, A082285, A239124, ...
%H A238476 W. Lang, <a href="https://cs.uwaterloo.ca/journals/JIS/VOL17/Lang/lang6.html">On Collatz' Words, Sequences, and Trees</a>, J. of Integer Sequences, Vol. 17 (2014), Article 14.11.7.
%H A238476 Manfred Trümper, <a href="http://dx.doi.org/10.1155/2014/756917">The Collatz Problem in the Light of an Infinite Free Semigroup</a>, Chinese Journal of Mathematics, Vol. 2014, Article ID 756917, 21 pages.
%H A238476 Eric Weisstein's World of Mathematics, <a href="https://mathworld.wolfram.com/CollatzProblem.html">Collatz Problem</a>.
%H A238476 Wikipedia,  <a href="https://en.wikipedia.org/wiki/Collatz_conjecture">Collatz Conjecture</a>.
%F A238476 Mo(n, k) = 2^(2*n)*k - (2^(2*n-1)+1)/3 for n >= 1 and k >= 1.
%F A238476 To(m, n) = Mo(n, m-n+1) = 2^(2*n)*(m-n+1) - (2^(2*n-1)+1)/3 for m >= n >= 1 and 0 for m < n.
%e A238476 The rectangular array Mo(n, k) begins:
%e A238476 n\k      1        2        3        4        5        6        7        8        9        10 ...
%e A238476 1:       3        7       11       15       19       23       27       31       35        39
%e A238476 2:      13       29       45       61       77       93      109      125      141       157
%e A238476 3:      53      117      181      245      309      373      437      501      565       629
%e A238476 4:     213      469      725      981     1237     1493     1749     2005     2261      2517
%e A238476 5:     853     1877     2901     3925     4949     5973     6997     8021     9045     10069
%e A238476 6:    3413     7509    11605    15701    19797    23893    27989    32085    36181     40277
%e A238476 7:   13653    30037    46421    62805    79189    95573   111957   128341   144725    161109
%e A238476 8:   54613   120149   185685   251221   316757   382293   447829   513365   578901    644437
%e A238476 9:  218453   480597   742741  1004885  1267029  1529173  1791317  2053461  2315605   2577749
%e A238476 10: 873813  1922389  2970965  4019541  5068117  6116693  7165269  8213845  9262421  10310997
%e A238476 ...
%e A238476 ---------------------------------------------------------------------------------------------
%e A238476 The triangle To(m, n) begins (zeros are not shown):
%e A238476 m\n    1    2    3     4     5      6      7       8       9      10 ...
%e A238476 1:     3
%e A238476 2:     7   13
%e A238476 3:    11   29   53
%e A238476 4:    15   45  117   213
%e A238476 5:    19   61  181   469   853
%e A238476 6:    23   77  245   725  1877   3413
%e A238476 7:    27   93  309   981  2901   7509  13653
%e A238476 8:    31  109  373  1237  3925  11605  30037   54613
%e A238476 9:    35  125  437  1493  4949  15701  46421  120149  218453
%e A238476 10:   39  141  501  1749  5973  19797  62805  185685  480597  873813
%e A238476 ...
%e A238476 n=1, ud, k=1: Mo(1, 1) = 3 = To(1, 1), No(1) = 5 with the Collatz sequence [3, 10, 5] of length 3.
%e A238476 n=1, ud, k=2: Mo(1, 2) = 7 = Te(2, 1), No(2) = 11 with the Collatz sequence [7, 22, 11] of length 3.
%e A238476 n=5, ud^9, k=2: Mo(5, 2) = 1877 = Te(6,5), No(2) = 11 with the Collatz sequence [1877, 5632, 2816, 1408, 704, 352, 176, 88, 44, 22, 11] of length 11.
%Y A238476 Cf. A006577, A139399, A112695, A238475, A004767, A082285, A239124.
%K A238476 nonn,tabl,easy
%O A238476 1,1
%A A238476 _Wolfdieter Lang_, Mar 10 2014