This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A238495 #21 Jul 15 2023 14:02:33 %S A238495 1,2,3,4,7,9,14,19,27,36,51,66,90,118,156,201,264,336,434,550,700,880, %T A238495 1112,1385,1733,2149,2666,3283,4049,4956,6072,7398,9009,10922,13237, %U A238495 15970,19261,23147,27790,33260,39776,47425,56497,67133,79685,94371,111653 %N A238495 Number of partitions p of n such that min(p) + (number of parts of p) is not a part of p. %C A238495 Also the number of integer partitions of n + 1 with median > 1, or with no more 1's than non-1 parts. - _Gus Wiseman_, Jul 10 2023 %F A238495 From _Gus Wiseman_, Jul 11 2023: (Start) %F A238495 a(n>2) = A000041(n) - A096373(n-2). %F A238495 a(n>1) = A000041(n-2) + A002865(n+1). %F A238495 a(n) = A000041(n+1) - A027336(n). %F A238495 (End) %e A238495 a(6) = 9 counts all the 11 partitions of 6 except 42 and 411. %e A238495 From _Gus Wiseman_, Jul 10 2023 (Start) %e A238495 The a(2) = 1 through a(8) = 14 partitions: %e A238495 (2) (3) (4) (5) (6) (7) (8) %e A238495 (21) (22) (32) (33) (43) (44) %e A238495 (31) (41) (42) (52) (53) %e A238495 (221) (51) (61) (62) %e A238495 (222) (322) (71) %e A238495 (321) (331) (332) %e A238495 (2211) (421) (422) %e A238495 (2221) (431) %e A238495 (3211) (521) %e A238495 (2222) %e A238495 (3221) %e A238495 (3311) %e A238495 (4211) %e A238495 (22211) %e A238495 (End) %t A238495 Table[Count[IntegerPartitions[n], p_ /; ! MemberQ[p, Length[p] + Min[p]]], {n, 50}] %t A238495 Table[Length[Select[IntegerPartitions[n+1],Median[#]>1&]],{n,30}] (* _Gus Wiseman_, Jul 10 2023 *) %Y A238495 Cf. A096373. %Y A238495 For mean instead of median we have A000065, ranks A057716. %Y A238495 The complement is counted by A027336, ranks A364056. %Y A238495 Rows sums of A359893 if we remove the first column. %Y A238495 These partitions have ranks A364058. %Y A238495 A000041 counts integer partitions. %Y A238495 A008284 counts partitions by length, A058398 by mean. %Y A238495 A025065 counts partitions with low mean 1, ranks A363949. %Y A238495 A124943 counts partitions by low median, high A124944. %Y A238495 A241131 counts partitions with low mode 1, ranks A360015. %Y A238495 Cf. A000070, A000975, A002865, A110618, A237984, A363488. %K A238495 nonn,easy %O A238495 1,2 %A A238495 _Clark Kimberling_, Feb 27 2014 %E A238495 Formula corrected by _Gus Wiseman_, Jul 11 2023