This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A238502 #22 Sep 12 2017 23:59:26 %S A238502 1,3,4,6,4,8,5,6,12,14,8,6,18,20,6,8,12,24,6,14,10,8,30,32,9,12,18,8, %T A238502 38,20,14,42,8,44,12,24,48,18,14,54,10,12,20,30,60,8,62,32,14,12,68, %U A238502 18,24,72,74,38,20,12,14,80,42,84,18,44,30,12,90,9,14,24 %N A238502 Let k = A239161(n); then a(n) = (sum of divisors of k) /(sum of divisors d of k with d <= sqrt(k)). %C A238502 A000203(k)/A066839(k) is an integer, where k = A239161(n). %H A238502 Michel Lagneau, <a href="/A238502/b238502.txt">Table of n, a(n) for n = 1..10000</a> %e A238502 a(10) = 14 because k = A239161(10) = 13 and A000203(13) = 14, A066839(13) = 1 and A000203(13)/A066839(13) is an integer. %t A238502 lst={}; f[n_]:=DivisorSigma[1,n]/Plus@@Select[Divisors@n,#<=Sqrt@n&];Do[If[IntegerQ[f[n]],AppendTo[lst, f[n]]],{n,1,200}];lst %o A238502 (PARI) lista(nn) = { for(n = 1, nn, q = sigma(n) / sumdiv(n, d, d*(d<=sqrt(n))); if (type(q) == "t_INT", print1(q, ", ")););} \\ _Michel Marcus_, Mar 05 2014 %Y A238502 Cf. A000203, A066839, A239161. %K A238502 nonn %O A238502 1,2 %A A238502 _Michel Lagneau_, Feb 27 2014