cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A238509 a(n) = |{0 < k < n: p(n) + p(k) - 1 is prime}|, where p(.) is the partition function (A000041).

Original entry on oeis.org

0, 1, 1, 2, 2, 3, 2, 1, 1, 2, 1, 2, 3, 4, 1, 4, 5, 2, 1, 5, 2, 1, 1, 3, 5, 2, 3, 2, 2, 4, 7, 3, 2, 2, 5, 6, 3, 7, 3, 3, 4, 3, 3, 2, 2, 4, 7, 4, 8, 3, 9, 4, 6, 4, 3, 7, 3, 2, 3, 4, 5, 3, 7, 4, 3, 5, 1, 9, 10, 6, 8, 2, 3, 3, 6, 6, 3, 1, 2, 7, 1, 6, 5, 2, 6, 8, 3, 4, 1, 1, 1, 9, 12, 3, 2, 3, 8, 4, 3, 2
Offset: 1

Views

Author

Zhi-Wei Sun, Feb 27 2014

Keywords

Comments

Conjecture: (i) a(n) > 0 for all n > 1. Also, if n > 2 is different from 8 and 25, then p(n) + p(k) + 1 is prime for some 0 < k < n.
(ii) If n > 7, then n + p(k) is prime for some 0 < k < n.
(iii) If n > 1, then p(k) + q(n) is prime for some 0 < k < n, where q(.) is the strict partition function given by A000009. If n > 2, then p(k) + q(n) - 1 is prime for some 0 < k < n. If n > 1 is not equal to 8, then p(k) + q(n) + 1 is prime for some 0 < k < n.

Examples

			a(11) = 1 since p(11) + p(10) - 1 = 56 + 42 - 1 = 97 is prime.
a(247) = 1 since p(247) + p(228) - 1 = 182973889854026 + 40718063627362 - 1 = 223691953481387 is prime.
		

Crossrefs

Programs

  • Mathematica
    p[n_,k_]:=PrimeQ[PartitionsP[n]+PartitionsP[k]-1]
    a[n_]:=Sum[If[p[n,k],1,0],{k,1,n-1}]
    Table[a[n],{n,1,100}]