A238516 a(n) = |{0 < k < n: (p(k)+1)*p(n) + 1 is prime}|, where p(.) is the partition function (A000041).
0, 1, 1, 1, 2, 3, 3, 3, 4, 5, 5, 2, 4, 6, 5, 3, 3, 3, 4, 1, 7, 7, 2, 6, 3, 8, 7, 4, 1, 6, 3, 4, 5, 8, 4, 4, 2, 2, 4, 9, 7, 6, 3, 6, 4, 2, 6, 6, 3, 8, 5, 6, 4, 7, 7, 4, 8, 7, 9, 1, 6, 7, 7, 3, 3, 7, 2, 5, 4, 10, 8, 5, 1, 8, 9, 1, 4, 6, 7, 12, 3, 2, 4, 10, 4, 4
Offset: 1
Keywords
Examples
a(4) = 1 since (p(1)+1)*p(4) + 1 = 2*5 + 1 = 11 is prime. a(20) = 1 since (p(12)+1)*p(20) + 1 = 78*627 + 1 = 48907 is prime. a(246) = 1 since (p(45)+1)*p(246) + 1 = 89135*169296722391554 + 1 = 15090263350371165791 is prime.
Links
- Zhi-Wei Sun, Table of n, a(n) for n = 1..10000
- Zhi-Wei Sun, Problems on combinatorial properties of primes, arXiv:1402.6641, 2014.
Programs
-
Mathematica
p[n_,k_]:=PrimeQ[PartitionsP[n]*(PartitionsP[k]+1)+1] a[n_]:=Sum[If[p[n,k],1,0],{k,1,n-1}] Table[a[n],{n,1,100}]
Comments