This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A238530 #36 May 10 2021 06:01:48 %S A238530 2,8,22,166,778,4962,29922,179682,688078,7060198,42361338,674524645 %N A238530 Position of first occurrence of n in A238529 (Recursive depth of n modulo sopfr(n)). %e A238530 The depth of 22 is 3 because 22->9->3, that is, 22 mod (11 + 2) = 9, 9 mod (3 + 3) = 3, and 3 mod (3) = 0, and 22 is the smallest number to have a depth of 3. %e A238530 a(10) = 7060198, because 7060198->3530097->392185->78417->8665->1713->565->93->25->5 %o A238530 (Python) %o A238530 def primfacs(n): %o A238530 i = 2 %o A238530 primfacs = [] %o A238530 while i * i <= n: %o A238530 while n % i == 0: %o A238530 primfacs.append(i) %o A238530 n = n / i %o A238530 i = i + 1 %o A238530 if n > 1: %o A238530 primfacs.append(n) %o A238530 return primfacs %o A238530 def sopfr(n): %o A238530 plist = list(primfacs(n)) %o A238530 l = len(plist) %o A238530 s = 0 %o A238530 while l > 0: %o A238530 s += plist[l - 1] %o A238530 l -= 1 %o A238530 return s %o A238530 def sd(n): %o A238530 d = 1 %o A238530 s = n % sopfr(n) %o A238530 if s > 1: %o A238530 d += sd(s) %o A238530 return d %o A238530 n=2 %o A238530 max=1000 %o A238530 rec = 0 %o A238530 lst = [] %o A238530 while n <= max: %o A238530 r = sd(n) %o A238530 if r > rec: %o A238530 lst.append(n) %o A238530 rec = r %o A238530 n += 1 %o A238530 print(lst) %K A238530 nonn,more %O A238530 1,1 %A A238530 _J. Stauduhar_, Feb 28 2014 %E A238530 a(12) from _Michel Marcus_, Mar 26 2014