cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A238533 Number of solutions to gcd(x^2 + y^2 + z^2 + t^2 + h^2, n) = 1 with x,y,z,t,h in [0,n-1].

Original entry on oeis.org

1, 16, 162, 512, 2500, 2592, 14406, 16384, 39366, 40000, 146410, 82944, 342732, 230496, 405000, 524288, 1336336, 629856, 2345778, 1280000, 2333772, 2342560, 6156502, 2654208, 7812500, 5483712, 9565938, 7375872, 19803868, 6480000, 27705630, 16777216, 23718420
Offset: 1

Views

Author

Keywords

Crossrefs

Cf. n^k * a(n): A000010 (k=-4), A002618 (k=-3), A053191 (k=-2), A189393 (k=-1), A239442 (k=2), A239443 (k=4).

Programs

  • Mathematica
    g[n_, 5] := g[n, 5] = Sum[If[GCD[x^2 + y^2 + z^2 + t^2 + h^2, n] == 1, 1, 0], {x, n}, {y, n}, {z, n}, {t, n}, {h, n}];Table[g[n,5] , {n, 1, 15}]
    Table[n^4 * EulerPhi[n], {n, 1, 33}] (* Amiram Eldar, Dec 06 2020 *)

Formula

From Álvar Ibeas, Nov 24 2017: (Start)
a(n) = phi(n^5) = n^4 * phi(n), where phi=A000010.
Dirichlet g.f.: zeta(s - 5) / zeta(s - 4). The n-th term of the Dirichlet inverse is n^4 * A023900(n) = (-1)^omega(n) * a(n) / A003557(n), where omega = A001221.
(End)
Sum_{k=1..n} a(k) ~ n^6 / Pi^2. - Vaclav Kotesovec, Feb 02 2019
Sum_{n>=1} 1/a(n) = Product_{p prime} (1 + p/(p^6 - p^5 - p + 1)) = 1.07162935672651489627... - Amiram Eldar, Dec 06 2020