This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A238537 #35 Nov 09 2021 18:39:46 %S A238537 1,42,1379,47124,1599205,54335358,1845747527,62701403688, %T A238537 2130000094537,72357312787410,2458018570699691,83500274463891516, %U A238537 2836551311028252973,96359244313163973414,3273377755262716618895,111198484435049515150416,3777475093033912744231057 %N A238537 A fourth-order linear divisibility sequence related to the Pell numbers. %C A238537 Let P and Q be integers. The Lucas sequences U(n) and V(n) (which depend on P and Q) are a pair of integer sequences that satisfy the recurrence equation a(n) = P*a(n-1) - Q*a(n-2) with the initial conditions U(0) = 0, U(1) = 1 and V(0) = 2, V(1) = P, respectively. The sequence {U(n)}n>=1 is a divisibility sequence, i.e., U(n) divides U(m) whenever n divides m and U(n) <> 0. In general the sequence V(n) is not a divisibility sequence. However, it can be shown that if p >= 3 is an odd integer then the sequence {U(p*n)*V(n)}n>=1 is a divisibility sequence satisfying a linear recurrence of order 4. For a proof and a generalization of this result see the Bala link. Here we take p = 3 with P = 2 and Q = -1, for which U(n) is the sequence of Pell numbers A000129, and consider the normalized divisibility sequence with initial term equal to 1. For other sequences of this type see A238536 and A238538 %H A238537 Michael De Vlieger, <a href="/A238537/b238537.txt">Table of n, a(n) for n = 1..654</a> %H A238537 Peter Bala, <a href="/A238536/a238536.pdf">A family of linear divisibility sequences of order four</a> %H A238537 E. L. Roettger and H. C. Williams, <a href="https://cs.uwaterloo.ca/journals/JIS/VOL24/Roettger/roettger12.html">Appearance of Primes in Fourth-Order Odd Divisibility Sequences</a>, J. Int. Seq., Vol. 24 (2021), Article 21.7.5. %H A238537 Wikipedia, <a href="https://en.wikipedia.org/wiki/Divisibility_sequence">Divisibility sequence</a> %H A238537 Wikipedia, <a href="https://en.wikipedia.org/wiki/Pell_number">Pell number</a> %H A238537 <a href="/index/Rec#order_04">Index entries for linear recurrences with constant coefficients</a>, signature (28,202,28,-1) %F A238537 a(n) = (1/5)*A000129(3*n)*A001333(n). %F A238537 a(n) = (1/(20*sqrt(2)))*((1 + sqrt(2))^(3*n) - (1 - sqrt(2))^(3*n))*( (1 + sqrt(2))^n + (1 - sqrt(2))^n ). %F A238537 O.g.f.: x*(1 + 14*x + x^2)/( (1 + 6*x + x^2)*(1 - 34*x + x^2) ). %F A238537 Recurrence equation: a(n) = 28*a(n-1) + 202*a(n-2) + 28*a(n-3) - a(n-4). %F A238537 a(n) = (1/10) * (Pell(4n) + (-1)^n*Pell(2n)), with Pell(n) = A000129(n). - _Ralf Stephan_, Mar 01 2014 %t A238537 LinearRecurrence[{28, 202, 28, -1}, {1, 42, 1379, 47124}, 17] (* _Jean-François Alcover_, Nov 02 2019 *) %Y A238537 Cf. A000032, A000045, A215466, A238536, A238538, A238539, A238540, A238541. %K A238537 nonn,easy %O A238537 1,2 %A A238537 _Peter Bala_, Feb 28 2014