This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A238541 #13 Feb 06 2021 21:51:12 %S A238541 1,91,7063,538447,41441455,3231753343,254851186927,20265345051679, %T A238541 1621012954550479,130194036583465855,10485834936321976111, %U A238541 846117830539227426271,68360837263665964839823,5527792975131721247371327,447241733557623755497669615 %N A238541 A fourth-order linear divisibility sequence: a(n) := A(n)/A(1) where A(n) := ( (3^n + 2^n)*(3^(3*n) - 2^(3*n)) ). %C A238541 The bivariate polynomials P(n,x,y) := (x^n + y^n)*(x^(3*n) - y^(3*n)) form a sequence of divisibility polynomials in the polynomial ring Z[x,y]; that is, if n divides m then P(n,x,y) divides P(m,x,y) in Z[x,y] (see the Bala link). Here we consider the integer sequence coming from the normalized polynomials P(n,x,y)/P(1,x,y) when x = 3 and y = 2. Other cases include A238538(x = 2, y = 1), A238539(x = 2, y = -1) and A238540(x = 3, y = 1). See also A238536, A238537 and A215466. %H A238541 Peter Bala, <a href="/A238536/a238536.pdf">A family of linear divisibility sequences of order four</a> %H A238541 Wikipedia, <a href="http://en.wikipedia.org/wiki/Divisibility_sequence">Divisibility sequence</a> %H A238541 <a href="/index/Rec#order_04">Index entries for linear recurrences with constant coefficients</a>, signature (175,-10158,226800,-1679616). %F A238541 a(n) = (1/95)*(3^n + 2^n)*(3^(3*n) - 2^(3*n)). %F A238541 a(n) = (1/95)*(9^n - 4^n)*(27^n - 8^n)/(3^n - 2^n). %F A238541 O.g.f.: x*(1 - 84*x + 1296*x^2)/((1 - 16*x)*(1 - 24*x)*(1 - 54*x)*(1 - 81*x)). %F A238541 Recurrence equation: a(n) = 175*a(n-1) - 10158*a(n-2) + 226800*a(n-4) - 1679616*a(n-4). %p A238541 #A238541 %p A238541 seq(1/95*(3^n + 2^n)*(3^(3*n) - 2^(2*n)), n = 1..20); %t A238541 LinearRecurrence[{175,-10158,226800,-1679616},{1,91,7063,538447},20] (* _Harvey P. Dale_, Apr 12 2018 *) %Y A238541 Cf. A215466, A238536, A238537, A238538, A238539, A238540. %K A238541 nonn,easy %O A238541 1,2 %A A238541 _Peter Bala_, Mar 01 2014