A238549 a(n) is one fourth of the total number of free ends of 4 line segments expansion at n iterations (see Comments lines for definition).
1, 2, 6, 8, 16, 20, 36, 44, 76, 92, 156, 188, 316, 380, 636, 764, 1276, 1532, 2556, 3068, 5116, 6140, 10236, 12284, 20476, 24572, 40956, 49148, 81916, 98300, 163836, 196604, 327676, 393212, 655356, 786428, 1310716, 1572860, 2621436, 3145724, 5242876, 6291452, 10485756
Offset: 1
Keywords
Examples
The first numbers of free ends (4*a(n)) are 4, 8, 24, 32, 64, 80, 144, 176, 304, 368, 624, ...
Links
- Kival Ngaokrajang, Illustration of initial terms
- Index entries for linear recurrences with constant coefficients, signature (1, 2, -2).
Programs
-
PARI
{print1(1,", "); for (n=1,100,s=1; for (i=0,n-1,s=s+(5-3*(-1)^i)*2^(1/4*(2*i-1+(-1)^i))/2); print1(s,", "))}
-
Sage
def a(): s, n = 2, 1 yield 1 while True: yield s s += (5-3*(-1)^n)*2^((2*n-1+(-1)^n)//4)//2 n += 1 A238549 = a(); [next(A238549) for in range(43)] # _Peter Luschny, Feb 24 2019
Formula
a(n) = 1 + Sum_{i=1..n-1} A143095(i).
G.f.: x*(2*x^2+x+1) / ((x-1)*(2*x^2-1)). - Colin Barker, May 02 2015
From Georg Fischer, Feb 20 2019: (Start)
With p = floor((n + 2) / 2) for n >= 4: if n even then a(n) = 2^p + 4 * (2^(p - 4) - 1); if n odd then a(n) = 2^p + 4 * (2^(p - 3) - 1).
a(n) = a(n - 1) + 2 * a(n - 2) - 2 * a(n - 3).
(End)
Comments