This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A238573 #13 Mar 01 2014 09:52:43 %S A238573 0,1,1,0,3,0,4,1,2,3,1,3,4,4,4,4,1,3,6,5,3,3,4,6,3,8,5,6,3,4,2,10,6,5, %T A238573 7,8,6,8,7,5,7,5,11,7,7,8,8,11,6,5,7,11,11,7,4,9,7,3,5,7,7,11,8,13,9, %U A238573 8,7,7,12,10,8,11,8,15,8,9,9,15,13,4 %N A238573 a(n) = |{0 < k <= n: prime(k*n) + 2 is prime}|. %C A238573 Conjecture: (i) a(n) > 0 for all n > 6, and a(n) = 1 only for n = 2, 3, 8, 11, 17. Moreover, for any n > 0 there exists a positive integer k < 3*sqrt(n) + 6 such that prime(k*n) + 2 is prime. %C A238573 (ii) For any integer n > 6, prime(k^2*n) + 2 is prime for some k = 1, ..., n. %C A238573 (iii) If n > 5, then prime(k^2*(n-k)) + 2 is prime for some 0 < k < n. %C A238573 Clearly, each of the three parts implies the twin prime conjecture. %C A238573 We have verified part (i) of the conjecture for n up to 2*10^6. %H A238573 Zhi-Wei Sun, <a href="/A238573/b238573.txt">Table of n, a(n) for n = 1..5000</a> %H A238573 Zhi-Wei Sun, <a href="http://arxiv.org/abs/1402.6641">Problems on combinatorial properties of primes</a>, arXiv:1402.6641, 2014. %e A238573 a(2) = 1 since prime(1*2) + 2 = 3 + 2 = 5 is prime. %e A238573 a(3) = 1 since prime(1*3) + 2 = 5 + 2 = 7 is prime. %e A238573 a(8) = 1 since prime(8*8) + 2 = 311 + 2 = 313 is prime. %e A238573 a(11) = 1 since prime(3*11) + 2 = 137 + 2 = 139 is prime. %e A238573 a(17) = 1 since prime(1*17) + 2 = 59 + 2 = 61 is prime. %t A238573 p[k_,n_]:=PrimeQ[Prime[k*n]+2] %t A238573 a[n_]:=Sum[If[p[k,n],1,0],{k,1,n}] %t A238573 Table[a[n],{n,1,80}] %Y A238573 Cf. A000040, A001359, A006512, A218829, A236531, A237578, A238576. %K A238573 nonn %O A238573 1,5 %A A238573 _Zhi-Wei Sun_, Mar 01 2014