cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A238580 a(n) = |{0 < k <= n: 2*k + 1 and prime(k)*prime(n) - 2 are both prime}|.

Original entry on oeis.org

1, 1, 2, 1, 2, 2, 1, 1, 3, 1, 2, 3, 2, 3, 3, 3, 2, 4, 2, 3, 3, 3, 2, 3, 2, 2, 3, 1, 1, 5, 3, 4, 3, 1, 4, 3, 1, 5, 4, 4, 2, 4, 5, 4, 5, 2, 5, 5, 3, 2, 4, 2, 4, 5, 3, 5, 2, 7, 4, 5, 2, 5, 4, 8, 4, 6, 5, 6, 5, 2, 5, 4, 3, 6, 2, 5, 1, 5, 8, 4
Offset: 1

Views

Author

Zhi-Wei Sun, Mar 01 2014

Keywords

Comments

Conjecture: a(n) > 0 for all n > 0, and a(n) = 1 only for n = 1, 2, 4, 7, 8, 10, 28, 34,37, 77.
Note that a prime p with p + 2 a product of at most two primes is called a Chen prime.

Examples

			a(7) = 1 since 2*3 + 1 = 7 and prime(3)*prime(7) - 2 = 5*17 - 2 = 83 are both prime.
a(8) = 1 since 2*8 + 1 = 17 and prime(8)*prime(8) - 2 = 19^2 - 2 = 359 are both prime.
a(77) = 1 since 2*20 + 1 = 41 and prime(20)*prime(77) - 2 = 71*389 - 2 = 27617 are both prime.
		

References

  • J.-R. Chen, On the representation of a large even integer as the sum of a prime and a product of at most two primes, Sci. Sinica 16(1973), 157-176.

Crossrefs

Programs

  • Mathematica
    p[n_,k_]:=PrimeQ[2k+1]&&PrimeQ[Prime[n]*Prime[k]-2]
    a[n_]:=Sum[If[p[n,k],1,0],{k,1,n}]
    Table[a[n],{n,1,80}]