This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A238597 #7 Mar 01 2014 14:11:54 %S A238597 0,1,2,1,1,2,2,4,1,1,5,3,1,3,1,2,4,3,3,2,2,3,4,3,1,5,3,1,3,2,4,5,2,2, %T A238597 2,3,3,6,3,3,4,2,4,5,3,4,5,3,2,6,2,3,8,1,1,5,5,3,5,4,4,6,2,3,3,4,3,7, %U A238597 3,1,7,4,4,5,4,3,8,4,1,7 %N A238597 Number of primes p < 2*n with 2*pi(p) + 1 and p*(2n-1) - 2 both prime, where pi(.) is given by A000720. %C A238597 Conjecture: (i) a(n) > 0 for all n > 1, and a(n) = 1 for no n > 195. %C A238597 (ii) For any integer n > 1, there is a prime p < 2*n with 2*pi(p) + 1 (or 2*pi(p) - 1) and 2*n + p both prime. %C A238597 Part (i) of this conjecture is an extension of the conjecture in A238580. %H A238597 Zhi-Wei Sun, <a href="/A238597/b238597.txt">Table of n, a(n) for n = 1..10000</a> %H A238597 Zhi-Wei Sun, <a href="http://arxiv.org/abs/1402.6641">Problems on combinatorial properties of primes</a>, arXiv:1402.6641, 2014. %e A238597 a(9) = 1 since 5, 2*pi(5) + 1 = 2*3 + 1 = 7 and 5*(2*9-1) - 2 = 5*17 - 2 = 83 are all prime. %e A238597 a(28) = 1 since 3, 2*pi(3) + 1 = 2*2 + 1 = 5 and 3*(2*28-1) - 2 = 3*55 - 2 = 163 are all prime. %e A238597 a(195) = 1 since 71, 2*pi(71) + 1 = 2*20 + 1 = 41 and 71*(2*195-1) - 2 = 27617 are all prime. %t A238597 p[n_,k_]:=p[n,k]=PrimeQ[k]&&PrimeQ[2*PrimePi[k]+1]&&PrimeQ[k*(2n-1)-2] %t A238597 a[n_]:=a[n]=Sum[If[p[n,k],1,0],{k,1,2n-1}] %t A238597 Table[a[n],{n,1,80}] %Y A238597 Cf. A000040, A000720, A237284, A238580. %K A238597 nonn %O A238597 1,3 %A A238597 _Zhi-Wei Sun_, Mar 01 2014