This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A238599 #19 Apr 11 2020 15:21:59 %S A238599 0,29,171,476,1015,1044,1907,3142,4815,7093,9882,13313,17452,22580, %T A238599 28393,35118,42821,43120,51939,61874,72991,85835,99604,114759,131366, %U A238599 150192,170009,191482,214677,240625,267588,296477,327358,361568,396775,434178,473843,475306,517455 %N A238599 Numbers k such that k+x+y is a perfect cube, where x and y are the two cubes nearest to k. %e A238599 The two cubes nearest to 0 are 0 and 1, and, because 0+0+1 is a perfect cube, 0 is in the sequence. %e A238599 The two cubes nearest to 1 are 0 and 1, and, because 1+0+1=2 is not a perfect cube, 1 is not in the sequence. %e A238599 The two cubes nearest to 29 are 27 and 8, and, because 29+27+8=64=4^3 is a perfect cube, 29 is in the sequence. %t A238599 pcQ[n_]:=Module[{cr=Surd[n,3]},IntegerQ[Surd[Total[Nearest[Range[ Floor[ cr]-1,Ceiling[cr]+1]^3,n,2]]+n,3]]]; Select[Range[0,520000],pcQ] (* _Harvey P. Dale_, Jul 25 2018 *) %o A238599 (Python) %o A238599 def icbrt(a): %o A238599 sr = 1 << (int.bit_length(int(a)) >> 1) %o A238599 while a < sr*sr*sr: sr>>=1 %o A238599 b = sr>>1 %o A238599 while b: %o A238599 s = sr + b %o A238599 if a >= s*s*s: sr = s %o A238599 b>>=1 %o A238599 return sr %o A238599 for k in range(1000000): %o A238599 s = icbrt(k) %o A238599 if k and s*s*s==k: s-=1 %o A238599 d1 = abs(k-s**3) %o A238599 d2 = abs(k-(s+1)**3) %o A238599 d3 = abs(k-(s-1)**3) %o A238599 kxy = k + s**3 + (s+1)**3 %o A238599 if s and d3<d2: kxy = k + s**3 + (s-1)**3 %o A238599 r = icbrt(kxy) %o A238599 if r*r*r==kxy: print(str(k), end=',') %o A238599 (Sage) %o A238599 def gen_a(): %o A238599 n = 1 %o A238599 while True: %o A238599 for t in range(n*(n*n + 3), (n+1)*(n*n + 2*n + 4) + 1): %o A238599 c = t + (2*n + 1)*(n*n + n + 1) %o A238599 if round(floor(c^(1/3)))^3 == c: %o A238599 yield t %o A238599 n += 1 # _Ralf Stephan_, Mar 09 2014 %Y A238599 Cf. A000578, A238489. %K A238599 nonn %O A238599 1,2 %A A238599 _Alex Ratushnyak_, Mar 01 2014