This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A238602 #23 Sep 08 2022 08:46:07 %S A238602 1,238,45507,9063516,1792708805,355009117386,70287911575687, %T A238602 13916722851826872,2755438412296182921,545562971271797876390, %U A238602 108018710075587599558731,21387159127038457710621972,4234549485214861760195346253,838419411023095574089504928386 %N A238602 A sixth-order linear divisibility sequence related to the Pell numbers: a(n) := (1/60)*Pell(3*n)*Pell(4*n)/Pell(n). %C A238602 Let P and Q be relatively prime integers. The Lucas sequence U(n) (which depends on P and Q) is an integer sequence that satisfies the recurrence equation a(n) = P*a(n-1) - Q*a(n-2) with the initial conditions U(0) = 0, U(1) = 1. The sequence {U(n)}n>=1 is a strong divisibility sequence, i.e., gcd(U(n),U(m)) = |U(gcd(n,m))|. It follows that {U(n)} is a divisibility sequence, i.e., U(n) divides U(m) whenever n divides m and U(n) <> 0. %C A238602 It can be shown that if p and q are a pair of relatively prime positive integers, and if U(n) never vanishes, then the sequence {U(p*n)*U(q*n)/U(n)}n>=1 is a linear divisibility sequence of order 2*min(p,q). For a proof and a generalization of this result see the Bala link. %C A238602 Here we take p = 3 and q = 4 with P = 2 and Q = -1, for which U(n) is the sequence of Pell numbers, A000129, and normalize the sequence {U(3*n)*U(4*n)/U(n)}n>=1 to have the initial term 1. %C A238602 For other sequences of this type see A238600, A238601 and A238603. See also A238536. %H A238602 G. C. Greubel, <a href="/A238602/b238602.txt">Table of n, a(n) for n = 1..435</a> %H A238602 P. Bala, <a href="/A238600/a238600_1.pdf">Divisibility sequences from strong divisibility sequences</a> %H A238602 Wikipedia, <a href="https://en.wikipedia.org/wiki/Divisibility_sequence">Divisibility sequence</a> %H A238602 Wikipedia, <a href="https://en.wikipedia.org/wiki/Lucas_sequence">Lucas Sequence</a> %H A238602 Wikipedia, <a href="https://en.wikipedia.org/wiki/Pell_number">Pell number</a> %H A238602 <a href="/index/Rec#order_06">Index entries for linear recurrences with constant coefficients</a>, signature (170,5745,-40052,5745,170,-1). %F A238602 a(n) = (1/60)*( Pell(2*n) + (-1)^n*Pell(4*n) + Pell(6*n) ). %F A238602 The sequence can be extended to negative indices using a(-n) = -a(n). %F A238602 O.g.f. x*(1 + 68*x - 698*x^2 + 68*x^3 + x^4)/( (1 - 6*x + x^2)*(1 + 34*x + x^2)*(1 - 198*x + x^2) ). %F A238602 Recurrence equation: a(n) = 170*a(n-1) + 5745*a(n-2) - 40052*a(n-3) + 5745*a(n-4) + 170*a(n-5) - a(n-6). %t A238602 Table[(1/60)*(Fibonacci[2*n, 2] + (-1)^n*Fibonacci[4*n, 2] + Fibonacci[6*n, 2]), {n, 1, 50}] (* _G. C. Greubel_, Aug 07 2018 *) %o A238602 (PARI) x='x+O('x^30); Vec(x*(1+68*x-698*x^2+68*x^3+x^4)/((1-6*x+x^2)*(1 + 34*x+x^2)*(1-198*x+x^2))) \\ _G. C. Greubel_, Aug 07 2018 %o A238602 (Magma) m:=30; R<x>:=PowerSeriesRing(Integers(), m); Coefficients(R!(x*(1 +68*x-698*x^2+68*x^3+x^4)/((1-6*x+x^2)*(1+34*x+x^2)*(1-198*x+x^2)))); // _G. C. Greubel_, Aug 07 2018 %Y A238602 Cf. A000129, A238536, A238600, A238601, A238603. %K A238602 nonn,easy %O A238602 1,2 %A A238602 _Peter Bala_, Mar 06 2014