This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A238619 #21 Jun 03 2021 09:31:09 %S A238619 0,0,0,0,1,2,5,8,15,22,33,47,68,93,132,176,239,314,412,536,693,884, %T A238619 1131,1427,1803,2249,2808,3489,4321,5325,6552,8022,9799,11913,14456, %U A238619 17502,21136,25457,30588,36673,43869,52398,62437,74277,88186,104526,123670,146028 %N A238619 Number of partitions of n having population standard deviation > 1. %C A238619 Regarding "standard deviation" see Comments at A238616. %F A238619 a(n) + A238617(n) = A000041(n). %e A238619 There are 11 partitions of 6, whose standard deviations are given by these approximations: 0., 2., 1., 1.41421, 0., 0.816497, 0.866025, 0., 0.5, 0.4, 0, so that a(6) = 2. %p A238619 b:= proc(n, i, m, s, c) `if`(n=0, `if`(s/c-(m/c)^2>1, 1, 0), %p A238619 `if`(i=1, b(0$2, m+n, s+n, c+n), add(b(n-i*j, i-1, %p A238619 m+i*j, s+i^2*j, c+j), j=0..n/i))) %p A238619 end: %p A238619 a:= n-> b(n$2, 0$3): %p A238619 seq(a(n), n=1..50); # _Alois P. Heinz_, Mar 11 2014 %t A238619 z = 55; g[n_] := g[n] = IntegerPartitions[n]; s[t_] := s[t] = Sqrt[Sum[(t[[k]] - Mean[t])^2, {k, 1, Length[t]}]/Length[t]] %t A238619 Table[Count[g[n], p_ /; s[p] < 1], {n, z}] (*A238616*) %t A238619 Table[Count[g[n], p_ /; s[p] <= 1], {n, z}] (*A238617*) %t A238619 Table[Count[g[n], p_ /; s[p] == 1], {n, z}] (*A238618*) %t A238619 Table[Count[g[n], p_ /; s[p] > 1], {n, z}] (*A238619*) %t A238619 Table[Count[g[n], p_ /; s[p] >= 1], {n, z}] (*A238620*) %t A238619 t[n_] := t[n] = N[Table[s[g[n][[k]]], {k, 1, PartitionsP[n]}]] %t A238619 ListPlot[Sort[t[30]]] (*plot of st.dev's of partitions of 30*) %t A238619 (* Second program: *) %t A238619 b[n_, i_, m_, s_, c_] := b[n, i, m, s, c] = If[n == 0, %t A238619 If[s/c - (m/c)^2 > 1, 1, 0], If[i == 1, b[0, 0, m+n, s+n, c+n], %t A238619 Sum[b[n - i*j, i - 1, m + i*j, s + i^2*j, c+j], {j, 0, n/i}]]]; %t A238619 a[n_] := b[n, n, 0, 0, 0]; %t A238619 Array[a, 50] (* _Jean-François Alcover_, Jun 03 2021, after _Alois P. Heinz_ *) %Y A238619 Cf. A238616. %K A238619 nonn,easy %O A238619 1,6 %A A238619 _Clark Kimberling_, Mar 01 2014