cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A238622 Number of partitions of n such that floor(n/2) or ceiling(n/2) is a part.

Original entry on oeis.org

1, 1, 2, 2, 4, 3, 7, 5, 11, 7, 17, 11, 25, 15, 36, 22, 51, 30, 71, 42, 97, 56, 132, 77, 177, 101, 235, 135, 310, 176, 406, 231, 527, 297, 681, 385, 874, 490, 1116, 627, 1418, 792, 1793, 1002, 2256, 1255, 2829, 1575, 3532, 1958, 4393, 2436, 5445, 3010, 6727
Offset: 1

Views

Author

Clark Kimberling, Mar 02 2014

Keywords

Examples

			a(7) counts these partitions:  43, 421, 4111, 331, 322, 3211, 31111.
		

Crossrefs

Programs

  • Mathematica
    z=40; g[n_] := g[n] = IntegerPartitions[n];
    t1 = Table[Count[g[n], p_ /; Or[MemberQ[p, Floor[n/2]], MemberQ[p, Ceiling[n/2]]]], {n, z}]   (* A238622 [or] *)
    t2 = Table[Count[g[n], p_ /; Nor[MemberQ[p, Floor[n/2]], MemberQ[p, Ceiling[n/2]]]], {n, z}]   (* A238623 [nor] *)
    t3 = Table[Count[g[n], p_ /; Xnor[MemberQ[p, Floor[n/2]], MemberQ[p, Ceiling[n/2]]]], {n, z}]   (* A238624 [xnor] *)

Formula

a(n) + A238623(n) = A000041(n).