This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A238631 #9 Oct 08 2022 16:35:41 %S A238631 1,5,64,2280,123464,7566280,478968264,30569959880,1955134763464, %T A238631 125107148059080,8006513870533064,512411390124519880, %U A238631 32794241006913221064,2098830017067059278280,134325098574291643691464,8596805948466686953550280,550195574937260409780728264 %N A238631 Number of partitions of 4^n into parts that are at most 4. %H A238631 Alois P. Heinz, <a href="/A238631/b238631.txt">Table of n, a(n) for n = 0..500</a> %H A238631 <a href="/index/Rec#order_04">Index entries for linear recurrences with constant coefficients</a>, signature (85,-1428,5440,-4096). %F A238631 a(n) = [x^(4^n)] Product_{j=1..4} 1/(1-x^j). %F A238631 G.f.: -(2048*x^4+1460*x^3-1067*x^2+80*x-1) / ((1-x) *(1-4*x) *(1-4^2*x) *(1-4^3*x)). %F A238631 a(n) = (128 + 9*2^(3+2*n) + 15*16^n + 64^n)/144 for n > 0. - _Stefano Spezia_, Oct 08 2022 %p A238631 gf:= -(2048*x^4+1460*x^3-1067*x^2+80*x-1)/((1-x)*(1-4*x)*(1-4^2*x)*(1-4^3*x)): %p A238631 a:= n-> coeff(series(gf, x, n+1), x, n): %p A238631 seq(a(n), n=0..20); %Y A238631 Row n=4 of A238016. %K A238631 nonn,easy %O A238631 0,2 %A A238631 _Alois P. Heinz_, Mar 01 2014