cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A238632 Number of partitions of 5^n into parts that are at most 5.

This page as a plain text file.
%I A238632 #6 Mar 01 2014 19:08:05
%S A238632 1,7,377,106852,55567352,33432635477,20735819929227,12940003469288602,
%T A238632 8085018247233663602,5052825953808096554227,3157977415776418319210477,
%U A238632 1973731034215692844676632352,1233581290054852867292137569852,770988230493054044846859764522977
%N A238632 Number of partitions of 5^n into parts that are at most 5.
%H A238632 Alois P. Heinz, <a href="/A238632/b238632.txt">Table of n, a(n) for n = 0..350</a>
%F A238632 a(n) = [x^(5^n)] Product_{j=1..5} 1/(1-x^j).
%F A238632 G.f.: (1953125*x^5+4828125*x^4-2015125*x^3+96440*x^2-774*x+1) / Product_{j=0..4} 1-5^j*x.
%p A238632 gf:= (1953125*x^5+4828125*x^4-2015125*x^3+96440*x^2-774*x+1)/mul(1-5^j*x, j=0..4):
%p A238632 a:= n-> coeff(series(gf, x, n+1), x, n):
%p A238632 seq(a(n), n=0..20);
%Y A238632 Row n=5 of A238016.
%K A238632 nonn
%O A238632 0,2
%A A238632 _Alois P. Heinz_, Mar 01 2014