cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A238641 Number of partitions p of 2n-1 such that n - (number of parts of p) is a part of p.

Original entry on oeis.org

0, 0, 1, 4, 9, 21, 37, 69, 113, 187, 286, 449, 657, 976, 1397, 2003, 2788, 3902, 5323, 7284, 9789, 13144, 17405, 23052, 30142, 39379, 50967, 65842, 84368, 107954, 137126, 173893
Offset: 1

Views

Author

Clark Kimberling, Mar 04 2014

Keywords

Examples

			a(4) counts these partitions of 7:  52, 511, 421, 331.
		

Crossrefs

Programs

  • Mathematica
    z = 30; g[n_] := IntegerPartitions[n]; m[p_, t_] := MemberQ[p, t];
    Table[Count[g[2 n], p_ /; m[p, n - Length[p]]], {n, z}] (*A238607*)
    Table[Count[g[2 n - 1], p_ /; m[p, n - Length[p]]], {n, z}] (*A238641*)
    Table[Count[g[2 n + 1], p_ /; m[p, n - Length[p]]], {n, z}] (*A238742*)
    p[n_, k_] := p[n, k] = If[k == 1 || n == k, 1, If[k > n, 0, p[n - 1, k - 1] + p[n - k, k]]]; q[n_, k_, e_] := q[n, k, e] = If[n - e < k - 1 , 0, If[k == 1, If[n == e, 1, 0], p[n - e, k - 1]]]; a[n_] := Sum[q[2*n - 1, u, n - u], {u, n - 1}]; Array[a,100] (* Giovanni Resta, Mar 09 2014 *)