A238641 Number of partitions p of 2n-1 such that n - (number of parts of p) is a part of p.
0, 0, 1, 4, 9, 21, 37, 69, 113, 187, 286, 449, 657, 976, 1397, 2003, 2788, 3902, 5323, 7284, 9789, 13144, 17405, 23052, 30142, 39379, 50967, 65842, 84368, 107954, 137126, 173893
Offset: 1
Examples
a(4) counts these partitions of 7: 52, 511, 421, 331.
Links
- Giovanni Resta, Table of n, a(n) for n = 1..1000
- Giulio Ruzza and Di Yang, On the spectral problem of the quantum KdV hierarchy, arXiv:2104.01480 [math-ph], 2021.
Programs
-
Mathematica
z = 30; g[n_] := IntegerPartitions[n]; m[p_, t_] := MemberQ[p, t]; Table[Count[g[2 n], p_ /; m[p, n - Length[p]]], {n, z}] (*A238607*) Table[Count[g[2 n - 1], p_ /; m[p, n - Length[p]]], {n, z}] (*A238641*) Table[Count[g[2 n + 1], p_ /; m[p, n - Length[p]]], {n, z}] (*A238742*) p[n_, k_] := p[n, k] = If[k == 1 || n == k, 1, If[k > n, 0, p[n - 1, k - 1] + p[n - k, k]]]; q[n_, k_, e_] := q[n, k, e] = If[n - e < k - 1 , 0, If[k == 1, If[n == e, 1, 0], p[n - e, k - 1]]]; a[n_] := Sum[q[2*n - 1, u, n - u], {u, n - 1}]; Array[a,100] (* Giovanni Resta, Mar 09 2014 *)