cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A238656 Number of partitions of n having standard deviation σ > 4.

This page as a plain text file.
%I A238656 #14 Mar 11 2014 13:39:00
%S A238656 0,0,0,0,0,0,0,0,0,0,1,2,4,5,9,14,19,28,41,57,80,109,149,199,265,351,
%T A238656 457,599,780,1011,1299,1664,2121,2682,3377,4252,5345,6660,8279,10277,
%U A238656 12733,15596,19245,23556,28761,35066,42723,51615,62657,75494,90978
%N A238656 Number of partitions of n having standard deviation σ > 4.
%C A238656 Regarding "standard deviation" see Comments at A238616.
%e A238656 There are 30 partitions of 9, whose standard deviations are given by these approximations:  0., 3.5, 2.5, 2.82843, 1.5, 2.16025, 2.16506, 0.5, 1.63299, 1.41421, 1.63936, 1.6, 1.41421, 0.816497, 1.29904, 1.08972, 1.16619, 1.11803, 0., 0.829156, 0.979796, 0.433013, 0.748331, 0.763763, 0.699854, 0.4, 0.5, 0.451754, 0.330719, 0, so that a(9) = 0.
%t A238656 z = 53; g[n_] := g[n] = IntegerPartitions[n]; c[t_] := c[t] = Length[t];
%t A238656 s[t_] := s[t] = Sqrt[Sum[(t[[k]] - Mean[t])^2, {k, 1, c[t]}]/c[t]]
%t A238656 Table[Count[g[n], p_ /; s[p] > 3], {n, z}]   (*A238655*)
%t A238656 Table[Count[g[n], p_ /; s[p] > 4], {n, z}]   (*A238656*)
%t A238656 Table[Count[g[n], p_ /; s[p] > 5], {n, z}]   (*A238657*)
%t A238656 t[n_] := t[n] = N[Table[s[g[n][[k]]], {k, 1, PartitionsP[n]}]]
%t A238656 ListPlot[Sort[t[30]]] (*plot of st dev's of partitions of 30*)
%Y A238656 Cf. A238616, A238661, A238655, A238657.
%K A238656 nonn,easy
%O A238656 1,12
%A A238656 _Clark Kimberling_, Mar 03 2014