This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A238659 #15 Mar 11 2014 13:39:56 %S A238659 1,2,3,5,7,11,14,20,25,35,44,59,72,93,115,146,179,221,267,328,393,472, %T A238659 562,687,801,948,1109,1315,1521,1797,2059,2414,2775,3213,3686,4256, %U A238659 4831,5574,6317,7205,8089,9279,10381,11751,13234,14949,16666,18869,20986 %N A238659 Number of partitions of n having standard deviation σ <= 2. %C A238659 Regarding "standard deviation" see Comments at A238616. %F A238659 a(n) + A238661(n) = A000041(n). %e A238659 There are 22 partitions of 8, whose standard deviations are given by these approximations: 0., 3., 2., 2.35702, 1., 1.69967, 1.73205, 0., 1.24722, 0.942809, 1.22474, 1.2, 0.471405, 1., 0.707107, 0.8, 0.745356, 0., 0.489898, 0.471405, 0.349927, 0, so that a(8) = 20. %t A238659 z = 50; g[n_] := g[n] = IntegerPartitions[n]; c[t_] := c[t] = Length[t]; s[t_] := s[t] = Sqrt[Sum[(t[[k]] - Mean[t])^2, {k, 1, c[t]}]/c[t]]; %t A238659 Table[Count[g[n], p_ /; s[p] < 2], {n, z}] (*A238658*) %t A238659 Table[Count[g[n], p_ /; s[p] <= 2], {n, z}] (*A238659*) %t A238659 Table[Count[g[n], p_ /; s[p] == 2], {n, z}] (*A238660*) %t A238659 Table[Count[g[n], p_ /; s[p] > 2], {n, z}] (*A238661*) %t A238659 Table[Count[g[n], p_ /; s[p] >= 2], {n, z}] (*A238662*) %t A238659 t[n_] := t[n] = N[Table[s[g[n][[k]]], {k, 1, PartitionsP[n]}]] %t A238659 ListPlot[Sort[t[30]]] (*plot of st deviations of partitions of 30*) %Y A238659 Cf. A238616, A238658, A238660-A238662. %K A238659 nonn,easy %O A238659 1,2 %A A238659 _Clark Kimberling_, Mar 03 2014