cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A238661 Number of partitions of n having standard deviation σ > 2.

Original entry on oeis.org

0, 0, 0, 0, 0, 0, 1, 2, 5, 7, 12, 18, 29, 42, 61, 85, 118, 164, 223, 299, 399, 530, 693, 888, 1157, 1488, 1901, 2403, 3044, 3807, 4783, 5935, 7368, 9097, 11197, 13721, 16806, 20441, 24868, 30133, 36494, 43895, 52880, 63424, 75900, 90609, 108088, 128404
Offset: 1

Views

Author

Clark Kimberling, Mar 03 2014

Keywords

Comments

Regarding "standard deviation" see Comments at A238616.

Examples

			There are 22 partitions of 8, whose standard deviations are given by these approximations:  0., 3., 2., 2.35702, 1., 1.69967, 1.73205, 0., 1.24722, 0.942809, 1.22474, 1.2, 0.471405, 1., 0.707107, 0.8, 0.745356, 0., 0.489898, 0.471405, 0.349927, 0, so that a(8) = 2.
		

Crossrefs

Programs

  • Mathematica
    z = 50; g[n_] := g[n] = IntegerPartitions[n]; c[t_] := c[t] = Length[t]; s[t_] := s[t] = Sqrt[Sum[(t[[k]] - Mean[t])^2, {k, 1, c[t]}]/c[t]];
    Table[Count[g[n], p_ /; s[p] < 2], {n, z}]   (*A238658*)
    Table[Count[g[n], p_ /; s[p] <= 2], {n, z}]  (*A238659*)
    Table[Count[g[n], p_ /; s[p] == 2], {n, z}]  (*A238660*)
    Table[Count[g[n], p_ /; s[p] > 2], {n, z}]   (*A238661*)
    Table[Count[g[n], p_ /; s[p] >= 2], {n, z}]  (*A238662*)
    t[n_] := t[n] = N[Table[s[g[n][[k]]], {k, 1, PartitionsP[n]}]]
    ListPlot[Sort[t[30]]] (*plot of st deviations of partitions of 30*)

Formula

a(n) + A238659(n) = A000041(n).