cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A238683 Reduced numerators of integral of the Stirling numbers of first kind.

This page as a plain text file.
%I A238683 #13 Mar 03 2014 09:49:10
%S A238683 1,0,1,0,-1,1,0,1,-1,1,0,-3,11,-3,1,0,12,-50,35,-2,1,0,-60,274,-225,
%T A238683 17,-5,1,0,360,-588,406,-147,175,-3,1,0,-2520,4356,-3283,6769,-980,46,
%U A238683 -7,1,0,20160,-36528,29531,-67284,7483,-648,273,-4,1,0
%N A238683 Reduced numerators of integral of the Stirling numbers of first kind.
%C A238683 For the denominators see A238157.
%e A238683 Fractions:
%e A238683 1,
%e A238683 0,  1/2,
%e A238683 0, -1/2,  1/3,
%e A238683 0,    1,   -1,  1/4,
%e A238683 0,   -3, 11/3, -3/2, 1/5,
%e A238683 etc.
%e A238683 numerators:
%e A238683 1,
%e A238683 0,  1,
%e A238683 0, -1,   1,
%e A238683 0,  1,  -1,  1,
%e A238683 0, -3,  11, -3,  1,
%e A238683 etc.
%t A238683 Table[StirlingS1[n, k]/(k+1) // Numerator, {n, 0, 11}, {k, 0, n}] // Flatten
%Y A238683 Cf. A048994, A238157.
%K A238683 sign,frac
%O A238683 0,12
%A A238683 _Jean-François Alcover_ and _Paul Curtz_, Mar 03 2014