cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A238688 Triangle read by rows: T(n,k) = A059381(n)/(A059381(k)*A059381(n-k)).

This page as a plain text file.
%I A238688 #20 Jan 25 2016 14:22:15
%S A238688 1,1,1,1,3,1,1,8,8,1,1,12,32,12,1,1,24,96,96,24,1,1,24,192,288,192,24,
%T A238688 1,1,48,384,1152,1152,384,48,1,1,48,768,2304,4608,2304,768,48,1,1,72,
%U A238688 1152,6912,13824,13824,6912,1152,72,1,1,72,1728,10368,41472,41472
%N A238688 Triangle read by rows: T(n,k) = A059381(n)/(A059381(k)*A059381(n-k)).
%C A238688 We assume that A059381(0)=1 since it would be the empty product.
%C A238688 These are the generalized binomial coefficients associated with the Jordan totient function J_2 given in A007434.
%C A238688 Another name might be the 2-totienomial coefficients.
%H A238688 Tom Edgar, <a href="http://www.emis.de/journals/INTEGERS/papers/o62/o62.Abstract.html">Totienomial Coefficients</a>, INTEGERS, 14 (2014), #A62.
%H A238688 Tom Edgar and Michael Z. Spivey, <a href="https://cs.uwaterloo.ca/journals/JIS/VOL19/Edgar/edgar3.html">Multiplicative functions, generalized binomial coefficients, and generalized Catalan numbers</a>, Journal of Integer Sequences, Vol. 19 (2016), Article 16.1.6.
%H A238688 Donald E. Knuth and Herbert S. Wilf, <a href="http://www.math.upenn.edu/~wilf/website/dm36.pdf">The power of a prime that divides a generalized binomial coefficient</a>, J. Reine Angew. Math., 396:212-219, 1989.
%F A238688 T(n,k) = A059381(n)/(A059381(k)* A059381(n-k)).
%F A238688 T(n,k) = prod_{i=1..n} A007434(i)/(prod_{i=1..k} A007434(i)*prod_{i=1..n-k} A007434(i)).
%F A238688 T(n,k) = A007434(n)/n*(k/A007434(k)*T(n-1,k-1)+(n-k)/A007434(n-k)*T(n-1,k)).
%e A238688 The first five terms in the second Jordan totient function are 1,3,8,12,24 and so T(4,2) = 12*8*3*1/((3*1)*(3*1))=32 and T(5,3) = 24*12*8*3*1/((8*3*1)*(3*1))=96.
%e A238688 The triangle begins
%e A238688 1
%e A238688 1   1
%e A238688 1   3   1
%e A238688 1   8   8   1
%e A238688 1   12  32  12   1
%e A238688 1   24  96  96   24   1
%e A238688 1   24  192 288  192  24 1
%o A238688 (Sage)
%o A238688 q=100 #change q for more rows
%o A238688 P=[0]+[i^2*prod([1-1/p^2 for p in prime_divisors(i)]) for i in [1..q]]
%o A238688 [[prod(P[1:n+1])/(prod(P[1:k+1])*prod(P[1:(n-k)+1])) for k in [0..n]] for n in [0..len(P)-1]] #generates the triangle up to q rows.
%Y A238688 Cf. A007434, A059381, A238453.
%K A238688 nonn,tabl
%O A238688 0,5
%A A238688 _Tom Edgar_, Mar 02 2014