This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A238694 #15 Feb 18 2022 10:03:21 %S A238694 0,1,1,3,1,3,1,5,25,5,31,5,1,15,49,17,1,5,1,17,9,33,69,89,61,111,199, %T A238694 309,75,297,1,5,49,131,31,17,31,131,165,437,55,33,309,495,361,437,999, %U A238694 89,139,195,129,183,685,315,915,189,585,1035,931,93,1,57,165 %N A238694 Smallest k such that 2^n - k and k*2^n - 1 are both prime or 0 if no such k exists. %C A238694 If a(n)=1, then the two primes are same and they are Mersenne primes (A000668). %H A238694 Alois P. Heinz, <a href="/A238694/b238694.txt">Table of n, a(n) for n = 1..1000</a> %e A238694 a(9) = 25 because 2^9 - 25 = 487 and 25*2^9 - 1 = 12799 are both prime. %p A238694 a:= proc(n) local k, p; p:= 2^n; %p A238694 for k while not (isprime(p-k) and isprime(k*p-1)) %p A238694 do if k>=p then return 0 fi od; k %p A238694 end: %p A238694 seq(a(n), n=1..70); # _Alois P. Heinz_, Mar 03 2014 %t A238694 a[n_] := Module[{k, p}, p = 2^n; %t A238694 For[k = 1, !(PrimeQ[p - k] && PrimeQ[k*p - 1]), k++, %t A238694 If[k >= p, Return[0]]]; k]; %t A238694 Table[a[n], {n, 1, 70}] (* _Jean-François Alcover_, Feb 18 2022, after _Alois P. Heinz_ *) %Y A238694 Cf. A238554. %K A238694 nonn %O A238694 1,4 %A A238694 _Ilya Lopatin_ and _Juri-Stepan Gerasimov_, Mar 03 2014 %E A238694 More terms from _Alois P. Heinz_, Mar 03 2014