cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A238701 Number of primes p < n with q = floor((n-p)/4) and q^2 - 2 both prime.

Original entry on oeis.org

0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 2, 2, 3, 3, 4, 4, 4, 3, 3, 3, 3, 4, 4, 4, 6, 5, 5, 5, 3, 4, 6, 6, 7, 6, 4, 4, 4, 4, 5, 5, 5, 5, 4, 4, 4, 4, 3, 3, 4, 4, 6, 6, 4, 5, 5, 5, 7, 6, 6, 6, 5, 5, 4, 4, 5, 5, 5, 5, 5, 5, 6, 6, 5, 5, 5, 5, 3, 4, 5, 5
Offset: 1

Views

Author

Zhi-Wei Sun, Mar 03 2014

Keywords

Comments

Conjecture: Let m > 0 and n > 2*m + 1 be integers. If m = 1 and 2 | n, or m = 3 and n is not congruent to 1 modulo 6, or m = 2, 4, 5, ..., then there is a prime p < n with q = floor((n-p)/m) and q^2 - 2 both prime.
In the case m = 1, this is a refinement of Goldbach's conjecture. In the case m = 2, this is stronger than Lemoine's conjecture (cf. A046927). The conjecture for m > 2 seems completely new. We view the conjecture as a natural extension of Goldbach's conjecture.

Examples

			a(11) = 2 since 2, floor((11-2)/4)= 2 and 2^2 - 2 are all prime, and 3, floor((11-3)/4) = 2 and 2^2 - 2 are all prime.
		

Crossrefs

Programs

  • Mathematica
    PQ[n_]:=PrimeQ[n]&&PrimeQ[n^2-2]
    p[n_,k_]:=PQ[Floor[(n-Prime[k])/4]]
    a[n_]:=Sum[If[p[n,k],1,0],{k,1,PrimePi[n-1]}]
    Table[a[n],{n,1,80}]