A238701 Number of primes p < n with q = floor((n-p)/4) and q^2 - 2 both prime.
0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 2, 2, 3, 3, 4, 4, 4, 3, 3, 3, 3, 4, 4, 4, 6, 5, 5, 5, 3, 4, 6, 6, 7, 6, 4, 4, 4, 4, 5, 5, 5, 5, 4, 4, 4, 4, 3, 3, 4, 4, 6, 6, 4, 5, 5, 5, 7, 6, 6, 6, 5, 5, 4, 4, 5, 5, 5, 5, 5, 5, 6, 6, 5, 5, 5, 5, 3, 4, 5, 5
Offset: 1
Keywords
Examples
a(11) = 2 since 2, floor((11-2)/4)= 2 and 2^2 - 2 are all prime, and 3, floor((11-3)/4) = 2 and 2^2 - 2 are all prime.
Links
- Zhi-Wei Sun, Table of n, a(n) for n = 1..10000
- Zhi-Wei Sun, Problems on combinatorial properties of primes, arXiv:1402.6641, 2014.
Programs
-
Mathematica
PQ[n_]:=PrimeQ[n]&&PrimeQ[n^2-2] p[n_,k_]:=PQ[Floor[(n-Prime[k])/4]] a[n_]:=Sum[If[p[n,k],1,0],{k,1,PrimePi[n-1]}] Table[a[n],{n,1,80}]
Comments