A238709 Triangular array: t(n,k) = number of partitions p = {x(1) >= x(2) >= ... >= x(k)} such that min(x(j) - x(j-1)) = k.
1, 1, 1, 3, 0, 1, 4, 1, 0, 1, 7, 1, 1, 0, 1, 10, 2, 0, 1, 0, 1, 16, 2, 1, 0, 1, 0, 1, 22, 3, 1, 1, 0, 1, 0, 1, 32, 4, 2, 0, 1, 0, 1, 0, 1, 44, 5, 2, 1, 0, 1, 0, 1, 0, 1, 62, 6, 3, 1, 1, 0, 1, 0, 1, 0, 1, 83, 8, 3, 2, 0, 1, 0, 1, 0, 1, 0, 1, 113, 10, 4, 2, 1
Offset: 1
Examples
row 2: 1 row 3: 1 ... 1 row 4: 3 ... 0 ... 1 row 5: 4 ... 1 ... 0 ... 1 row 6: 7 ... 1 ... 1 ... 0 ... 1 row 7: 10 .. 2 ... 0 ... 1 ... 0 ... 1 row 8: 16 .. 2 ... 1 ... 0 ... 1 ... 0 ... 1 row 9: 22 .. 3 ... 1 ... 1 ... 0 ... 1 ... 0 ... 1 Let m = min(x(j) - x(j-1)); then for row 5, the 4 partitions with m = 0 are 311, 221, 2111, 11111; the 1 partition with m = 1 is 32, and the 1 partition with m = 3 is 41.
Links
- Clark Kimberling, Table of n, a(n) for n = 1..400
Programs
-
Mathematica
z = 25; p[n_, k_] := p[n, k] = IntegerPartitions[n][[k]]; m[n_, k_] := m[n, k] = Min[-Differences[p[n, k]]]; c[n_] := Table[m[n, h], {h, 1, PartitionsP[n]}]; v = Table[Count[c[n], h], {n, 2, z}, {h, 0, n - 2}]; Flatten[v] TableForm[v]
Comments