This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A238710 #4 Mar 10 2014 15:19:17 %S A238710 1,1,1,2,1,1,1,3,1,1,3,3,2,1,1,1,6,3,2,1,1,3,6,6,2,2,1,1,2,10,6,5,2,2, %T A238710 1,1,3,11,11,6,4,2,2,1,1,1,16,13,10,5,4,2,2,1,1,5,17,19,12,9,4,4,2,2, %U A238710 1,1,1,24,24,18,11,8,4,4,2,2,1,1,3,27,34 %N A238710 Triangular array: t(n,k) = number of partitions p = {x(1) >= x(2) >= ... >= x(k)} such that max(x(j) - x(j-1)) = k. %C A238710 The first two columns are essentially A032741 and A237665. Counting the top row as row 2, the sum of numbers in row n is A000041(n) - 1. %H A238710 Clark Kimberling, <a href="/A238710/b238710.txt">Table of n, a(n) for n = 1..400</a> %e A238710 row 2: 1 %e A238710 row 3: 1 ... 1 %e A238710 row 4: 2 ... 1 ... 1 %e A238710 row 5: 1 ... 3 ... 1 ... 1 %e A238710 row 6: 3 ... 3 ... 2 ... 1 ... 1 %e A238710 row 7: 1 ... 6 ... 3 ... 2 ... 1 ... 1 %e A238710 row 8: 3 ... 6 ... 6 ... 2 ... 2 ... 1 ... 1 %e A238710 row 9: 2 ... 10 .. 6 ... 5 ... 2 ... 2 ... 1 ... 1 %e A238710 Let m = max(x(j) - x(j-1)); then for row 5, the 1 partition with m = 0 is 11111; the 3 partitions with m = 1 are 32, 221, 2111; the 1 partition with m = 2 is 311, and the 1 partition with m = 3 is 41. %t A238710 z = 25; p[n_, k_] := p[n, k] = IntegerPartitions[n][[k]]; m[n_, k_] := m[n, k] = Max[-Differences[p[n, k]]]; c[n_] := Table[m[n, h], {h, 1, PartitionsP[n]}]; v = Table[Count[c[n], h], {n, 2, z}, {h, 0, n - 2}]; Flatten[v] %t A238710 TableForm[v] %Y A238710 Cf. A238710, A238709, A238353. %K A238710 nonn,tabl,easy %O A238710 1,4 %A A238710 _Clark Kimberling_, Mar 03 2014