A008470 At least 3 out of 10m+1, 10m+3, 10m+7, 10m+9 are primes.
1, 4, 7, 10, 13, 19, 22, 31, 43, 46, 61, 64, 82, 85, 88, 103, 106, 109, 130, 142, 145, 148, 160, 166, 169, 178, 187, 199, 208, 238, 268, 271, 316, 325, 346, 367, 376, 391, 400, 409, 415, 421, 451, 472, 478, 493, 523, 541, 544, 547, 550, 565, 574, 586, 670, 682
Offset: 1
Keywords
Links
- Michael S. Branicky, Table of n, a(n) for n = 1..14513 (all terms <= 10^6)
Programs
-
PARI
is_A008470(m)=primepi(10*m+10) > primepi(10*m)+2. \\ M. F. Hasler, Mar 03 2014
-
PARI
is(n)=if(isprime(10*n+1), if(isprime(10*n+3), isprime(10*n+7) || isprime(10*n+9), isprime(10*n+7) && isprime(10*n+9)), isprime(10*n+3)&&isprime(10*n+7)&&isprime(10*n+9)) \\ Charles R Greathouse IV, Mar 03 2014
-
Python
from sympy import isprime def ok(m): return sum(isprime(10*m+i) for i in [1, 3, 7, 9]) >= 3 print(list(filter(ok, range(700)))) # Michael S. Branicky, Sep 12 2021
Formula
m is a term <=> primepi(10m+10) > primepi(10m)+2. - M. F. Hasler, Mar 03 2014
Extensions
a(45) and beyond from Michael S. Branicky, Sep 12 2021
Comments