This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A238714 #31 May 09 2021 11:17:51 %S A238714 2,3,4,5,5,7,2,3,3,11,5,13,5,7,8,17,2,19,2,10,3,23,5,5,11,9,5,29,10, %T A238714 31,2,5,7,11,5,37,17,7,7,41,5,43,5,11,10,47,4,7,2,11,17,53,3,7,4,13,9, %U A238714 59,12,61,29,11,4,11,2,67,5,17,14,71,12,73,11,3,7,5,5 %N A238714 Final divisor of A238529(n). %C A238714 Conjecture: Every integer greater than 1, except 6, is an element of the sequence. %H A238714 Tom Davis, <a href="/A238714/b238714.txt">Table of n, a(n) for n = 2..10001</a> %e A238714 a(8) = 2, because 8 mod sopfr(8) = 8 mod 6 = 2, and 2 mod sopfr(2) = 2 mod 2 = 0, and 2 is the last divisor used. %e A238714 a(21) = 10, because 21 mod sopfr(21) = 21 mod 10 = 1, and 10 is the last divisor used. %o A238714 (Python) %o A238714 def primfacs(n): %o A238714 i = 2 %o A238714 primfac = [] %o A238714 while i * i <= n: %o A238714 while n % i == 0: %o A238714 primfac.append(i) %o A238714 n //= i %o A238714 i += 1 %o A238714 if n > 1: %o A238714 primfac.append(n) %o A238714 return primfac %o A238714 def sopfr(n): %o A238714 plist = primfacs(n) %o A238714 l = len(plist) %o A238714 s = 0 %o A238714 while l > 0: %o A238714 s += plist[l - 1] %o A238714 l -= 1 %o A238714 return s %o A238714 n = 2 %o A238714 max = 1000 %o A238714 lst = [] %o A238714 while n <= max: %o A238714 rem = n %o A238714 while rem > 1: %o A238714 last = sopfr(rem) %o A238714 rem = rem % last %o A238714 lst.append(last) %o A238714 n += 1 %o A238714 print(lst) %Y A238714 Cf. A238529. %K A238714 nonn %O A238714 2,1 %A A238714 _J. Stauduhar_, Mar 03 2014