cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A238727 Number T(n,k) of standard Young tableaux with n cells where k is the largest value in the last row; triangle T(n,k), n>=0, 0<=k<=n, read by rows.

This page as a plain text file.
%I A238727 #26 Aug 13 2025 23:10:09
%S A238727 1,0,1,0,0,2,0,0,1,3,0,0,1,2,7,0,0,1,3,8,14,0,0,1,4,11,19,41,0,0,1,7,
%T A238727 19,34,64,107,0,0,1,11,32,62,119,202,337,0,0,1,21,64,131,248,418,671,
%U A238727 1066,0,0,1,36,124,277,545,943,1518,2361,3691
%N A238727 Number T(n,k) of standard Young tableaux with n cells where k is the largest value in the last row; triangle T(n,k), n>=0, 0<=k<=n, read by rows.
%C A238727 T(0,0) = 1 by convention.
%C A238727 Also the number of ballot sequences of length n having the last occurrence of the maximal value at position k.
%C A238727 T(n,3) = A051920(n-3) for n>3.
%C A238727 T(2*n,n) gives A246818.
%C A238727 Main diagonal gives A238728.
%C A238727 Row sums give A000085.
%H A238727 Joerg Arndt and Alois P. Heinz, <a href="/A238727/b238727.txt">Rows n = 0..43, flattened</a>
%H A238727 Wikipedia, <a href="https://en.wikipedia.org/wiki/Young_tableau">Young tableau</a>
%e A238727 The 10 tableaux with n=4 cells sorted by largest value in the last row:
%e A238727   :[1 3 4]:[1 4] [1 2 4]:[1] [1 2] [1 3] [1 2 3] [1 2] [1 3] [1 2 3 4]:
%e A238727   :[2]    :[2]   [3]    :[2] [3]   [2]   [4]     [3 4] [2 4]          :
%e A238727   :       :[3]          :[3] [4]   [4]                                :
%e A238727   :       :             :[4]                                          :
%e A238727   : --2-- : -----3----- : ---------------------4--------------------- :
%e A238727 The 10 ballot sequences of length 4 sorted by the position of the last occurrence of the maximal value:
%e A238727   [1, 2, 1, 1]  ->  2 } -- 1
%e A238727   [1, 2, 3, 1]  ->  3 \ __ 2
%e A238727   [1, 1, 2, 1]  ->  3 /
%e A238727   [1, 2, 3, 4]  ->  4 \
%e A238727   [1, 1, 2, 3]  ->  4  \
%e A238727   [1, 2, 1, 3]  ->  4   \
%e A238727   [1, 1, 1, 2]  ->  4    } 7
%e A238727   [1, 1, 2, 2]  ->  4   /
%e A238727   [1, 2, 1, 2]  ->  4  /
%e A238727   [1, 1, 1, 1]  ->  4 /
%e A238727 thus row 4 = [0, 0, 1, 2, 7].
%e A238727 Triangle T(n,k) begins:
%e A238727   00:   1;
%e A238727   01:   0, 1;
%e A238727   02:   0, 0, 2;
%e A238727   03:   0, 0, 1,  3;
%e A238727   04:   0, 0, 1,  2,   7;
%e A238727   05:   0, 0, 1,  3,   8,  14;
%e A238727   06:   0, 0, 1,  4,  11,  19,  41;
%e A238727   07:   0, 0, 1,  7,  19,  34,  64, 107;
%e A238727   08:   0, 0, 1, 11,  32,  62, 119, 202,  337;
%e A238727   09:   0, 0, 1, 21,  64, 131, 248, 418,  671, 1066;
%e A238727   10:   0, 0, 1, 36, 124, 277, 545, 943, 1518, 2361, 3691;
%p A238727 h:= proc(l) option remember; local n, s; n:= nops(l); s:= add(i, i=l);
%p A238727      `if`(n=0, 1, add(`if`(i<n and l[i]>l[i+1], h(subsop(i=l[i]-1, l)),
%p A238727      `if`(i=n, (p->add(coeff(p,x,j)*x^`if`(j<s, s, j), j=0..degree(p)))
%p A238727       (h(subsop(i=`if`(l[i]>1, l[i]-1, [][]), l))), 0)), i=1..n))
%p A238727     end:
%p A238727 g:= (n, i, l)-> `if`(n=0 or i=1, h([l[], 1$n]),
%p A238727        add(g(n-i*j, i-1, [l[], i$j]), j=0..n/i)):
%p A238727 T:= n-> (p->seq(coeff(p, x, i), i=0..n))(g(n$2, [])):
%p A238727 seq(T(n), n=0..12);
%t A238727 h[l_] := h[l] = With[{n = Length[l], s = Total[l]},
%t A238727      If[n == 0, 1, Sum[If[i < n && l[[i]] > l[[i + 1]],
%t A238727      h[ReplacePart[l, i -> l[[i]] - 1]], If[i == n, Function[p,
%t A238727      Sum[Coefficient[p, x, j] x^If[j < s, s, j], {j, 0,
%t A238727      Exponent[p, x]}]][h[ReplacePart[l, i -> If[l[[i]] > 1,
%t A238727      l[[i]] - 1, Nothing]]]], 0]], {i, n}]]];
%t A238727 g[n_, i_, l_] := If[n == 0 || i == 1, h[Join[l, Table[1, {n}]]],
%t A238727      Sum[g[n - i*j, i - 1, Join[l, Table[i, {j}]]], {j, 0, n/i}]];
%t A238727 T[n_] := CoefficientList[g[n, n, {}], x];
%t A238727 Table[T[n], {n, 0, 10}] // Flatten (* _Jean-François Alcover_, Aug 27 2021, after Maple code *)
%K A238727 nonn,tabl
%O A238727 0,6
%A A238727 _Joerg Arndt_ and _Alois P. Heinz_, Mar 03 2014