This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A238727 #26 Aug 13 2025 23:10:09 %S A238727 1,0,1,0,0,2,0,0,1,3,0,0,1,2,7,0,0,1,3,8,14,0,0,1,4,11,19,41,0,0,1,7, %T A238727 19,34,64,107,0,0,1,11,32,62,119,202,337,0,0,1,21,64,131,248,418,671, %U A238727 1066,0,0,1,36,124,277,545,943,1518,2361,3691 %N A238727 Number T(n,k) of standard Young tableaux with n cells where k is the largest value in the last row; triangle T(n,k), n>=0, 0<=k<=n, read by rows. %C A238727 T(0,0) = 1 by convention. %C A238727 Also the number of ballot sequences of length n having the last occurrence of the maximal value at position k. %C A238727 T(n,3) = A051920(n-3) for n>3. %C A238727 T(2*n,n) gives A246818. %C A238727 Main diagonal gives A238728. %C A238727 Row sums give A000085. %H A238727 Joerg Arndt and Alois P. Heinz, <a href="/A238727/b238727.txt">Rows n = 0..43, flattened</a> %H A238727 Wikipedia, <a href="https://en.wikipedia.org/wiki/Young_tableau">Young tableau</a> %e A238727 The 10 tableaux with n=4 cells sorted by largest value in the last row: %e A238727 :[1 3 4]:[1 4] [1 2 4]:[1] [1 2] [1 3] [1 2 3] [1 2] [1 3] [1 2 3 4]: %e A238727 :[2] :[2] [3] :[2] [3] [2] [4] [3 4] [2 4] : %e A238727 : :[3] :[3] [4] [4] : %e A238727 : : :[4] : %e A238727 : --2-- : -----3----- : ---------------------4--------------------- : %e A238727 The 10 ballot sequences of length 4 sorted by the position of the last occurrence of the maximal value: %e A238727 [1, 2, 1, 1] -> 2 } -- 1 %e A238727 [1, 2, 3, 1] -> 3 \ __ 2 %e A238727 [1, 1, 2, 1] -> 3 / %e A238727 [1, 2, 3, 4] -> 4 \ %e A238727 [1, 1, 2, 3] -> 4 \ %e A238727 [1, 2, 1, 3] -> 4 \ %e A238727 [1, 1, 1, 2] -> 4 } 7 %e A238727 [1, 1, 2, 2] -> 4 / %e A238727 [1, 2, 1, 2] -> 4 / %e A238727 [1, 1, 1, 1] -> 4 / %e A238727 thus row 4 = [0, 0, 1, 2, 7]. %e A238727 Triangle T(n,k) begins: %e A238727 00: 1; %e A238727 01: 0, 1; %e A238727 02: 0, 0, 2; %e A238727 03: 0, 0, 1, 3; %e A238727 04: 0, 0, 1, 2, 7; %e A238727 05: 0, 0, 1, 3, 8, 14; %e A238727 06: 0, 0, 1, 4, 11, 19, 41; %e A238727 07: 0, 0, 1, 7, 19, 34, 64, 107; %e A238727 08: 0, 0, 1, 11, 32, 62, 119, 202, 337; %e A238727 09: 0, 0, 1, 21, 64, 131, 248, 418, 671, 1066; %e A238727 10: 0, 0, 1, 36, 124, 277, 545, 943, 1518, 2361, 3691; %p A238727 h:= proc(l) option remember; local n, s; n:= nops(l); s:= add(i, i=l); %p A238727 `if`(n=0, 1, add(`if`(i<n and l[i]>l[i+1], h(subsop(i=l[i]-1, l)), %p A238727 `if`(i=n, (p->add(coeff(p,x,j)*x^`if`(j<s, s, j), j=0..degree(p))) %p A238727 (h(subsop(i=`if`(l[i]>1, l[i]-1, [][]), l))), 0)), i=1..n)) %p A238727 end: %p A238727 g:= (n, i, l)-> `if`(n=0 or i=1, h([l[], 1$n]), %p A238727 add(g(n-i*j, i-1, [l[], i$j]), j=0..n/i)): %p A238727 T:= n-> (p->seq(coeff(p, x, i), i=0..n))(g(n$2, [])): %p A238727 seq(T(n), n=0..12); %t A238727 h[l_] := h[l] = With[{n = Length[l], s = Total[l]}, %t A238727 If[n == 0, 1, Sum[If[i < n && l[[i]] > l[[i + 1]], %t A238727 h[ReplacePart[l, i -> l[[i]] - 1]], If[i == n, Function[p, %t A238727 Sum[Coefficient[p, x, j] x^If[j < s, s, j], {j, 0, %t A238727 Exponent[p, x]}]][h[ReplacePart[l, i -> If[l[[i]] > 1, %t A238727 l[[i]] - 1, Nothing]]]], 0]], {i, n}]]]; %t A238727 g[n_, i_, l_] := If[n == 0 || i == 1, h[Join[l, Table[1, {n}]]], %t A238727 Sum[g[n - i*j, i - 1, Join[l, Table[i, {j}]]], {j, 0, n/i}]]; %t A238727 T[n_] := CoefficientList[g[n, n, {}], x]; %t A238727 Table[T[n], {n, 0, 10}] // Flatten (* _Jean-François Alcover_, Aug 27 2021, after Maple code *) %K A238727 nonn,tabl %O A238727 0,6 %A A238727 _Joerg Arndt_ and _Alois P. Heinz_, Mar 03 2014