cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A238734 Log of twice the twin prime constant, C_2, log(2*A005597).

Original entry on oeis.org

2, 7, 7, 8, 7, 6, 8, 8, 2, 0, 7, 3, 2, 3, 1, 9, 6, 1, 9, 3, 2, 3, 1, 0, 8, 6, 6, 7, 0, 3, 2, 5, 3, 4, 2, 0, 3, 6, 0, 2, 0, 6, 2, 9, 4, 1, 4, 7, 3, 6, 8, 2, 9, 8, 8, 2, 4, 5, 2, 7, 0, 5, 3, 3, 6, 7, 7, 1, 6, 4, 9, 8, 0, 0, 8, 2, 8, 3, 5, 0, 7, 5, 9, 9, 6, 6, 3, 7, 4, 8, 8, 4, 6, 9, 1, 0, 3, 9, 4, 1, 6, 6, 9, 8, 0, 9, 2, 9, 5, 8, 6, 6, 1
Offset: 0

Views

Author

John W. Nicholson, Mar 03 2014

Keywords

Comments

The value occurs as term in equation (15) in the Wolf paper. - Ralf Stephan, Mar 28 2014

Examples

			0.2778768820732319619323108667032534203602062941473682988245270533677164980...
		

Crossrefs

Programs

  • Mathematica
    digits = 113;
    s[n_] := (1/n)*N[Sum[MoebiusMu[d]*2^(n/d), {d, Divisors[n]}], digits + 50];
    C2 = (175/256)*Product[(Zeta[n]*(1 - 2^(-n))*(1 - 3^(-n))*(1 - 5^(-n))*(1 - 7^(-n)))^(-s[n]), {n, 2, digits + 50}];
    RealDigits[Log[2 C2]][[1]][[1 ;; digits]] (* Jean-François Alcover, Feb 16 2019 *)
  • PARI
    default(realprecision,1000);
    result={175/256*prod(k=2, 500, (zeta(k)*(1-1/2^k)*(1-1/3^k)*(1-1/5^k)*(1-1/7^k))^(-sumdiv(k, d, moebius(d)*2^(k/d))/k))};log(2*result)
    
  • PARI
    log(2 * prodeulerrat(1-1/(p-1)^2, 1, 3)) \\ Amiram Eldar, Mar 16 2021

Formula

Equals log(2*A005597).